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Prognostic Signature Identification by Modified Steepest Descent. To
identify a signature comprising genes that are not ranked by
some univariate criterion, we developed a discrete, greedy
gradient-descent algorithm, which we termed modified steepest
descent (mSD). mSD begins by considering all possible classi-
fiers (signatures) of 1 dimension (gene), and selecting the best
gene. Once this optimal single-gene classifier is identified, the
algorithm proceeds to add additional dimensions (genes) se-
quentially, testing all possible subsets of 2 genes that contain the
optimal single-gene classifier. This corresponds to testing all
supersets of the single-gene classifier and taking the largest
discrete step to improve classifier performance. This procedure
iterates through higher dimensions, evaluating successive super-
sets of the best n-gene classifier identified thus far. The algorithm
terminates when an n gene classifier is discovered whose per-
formance is not exceeded by any n � 1 gene superset of itself.
At each stage of the feature selection, classifier performance is
evaluated by using k-medians clustering with k � 2 to separate
patients into 2 groups. Note that clustering is used here as an
exploratory technique, not as a significance-testing method (1,
2). Next, survival differences between these 2 groups are as-
sessed by using the log-rank test. Gene selection was made on the
basis of the �2 statistic from the log-rank test, and thus the
termination criterion corresponds to finding an n gene classifier
whose �2 score cannot be exceeded by adding any single addi-
tional gene. The final output of the algorithm is a subset of
prognostic genes, along with a separation of patients into a group
with good survival (the ‘‘good prognosis group’’) and a group
with poor survival (the ‘‘poor prognosis group’’). A Cox pro-
portional hazards model including stage was then fit to these
group assignments. Hazard ratios for the classification were
extracted, along with p values based on the Wald test. Feature
selection was implemented in Perl (v5.8.7) and was run on AIX
(v5.2.0.0) on an IBM p690. Clustering used the
Algorithm::Cluster (v1.31) C library (3) via its Perl bindings.
Survival analysis used the survival package (v2.20) in R (v2.0.1).

Comparison of Patient Classification By Using 3- and 6-Gene Signa-
tures. Two genes (STX1A and HIF1A) from this signature overlap
with our previously reported linear risk-score analysis (4).
Because we used the same training dataset for both algorithms
we are able to investigate the effect this overlap has on patient
classifications. We compared the patient-by-patient predictions
of our earlier risk-score-derived 3-gene signature and our cur-
rent 6-gene signature (Table S2). The 3-gene signature did not
classify 10 patients from the initial cohort of 147, leaving 137
patients classified by both methods. Of these, 108 (79%) were
classified identically by both methods. Most of the 29 mismatches
(24/29 � 83%) were classified as poor prognosis by the 3-gene
signature and good prognosis by the 6-gene signature. Similar
proportions of adenocarcinomas and squamous cell carcinomas
were divergently classified (22.6% vs. 20.2%, P � 0.904). The 2
classifiers showed somewhat greater divergence for stage I than
stage II or III patients, although this was not statistically
significant (25.6% vs. 13.7%, P � 0.154). The few divergences
observed reflect the use of median dichotomization in the
risk-score analysis. Median dichotomization is a common sta-
tistical procedure used when the training groups that cannot be
defined as a priori, and forces the good and poor prognosis
groups to be equally sized in the training dataset. By contrast the
semisupervised approach used by the mSD algorithm finds

groups that reflect the strongest trend within the training
dataset, regardless of group sizes. This is done by using unsu-
pervised pattern-recognition (clustering). As a result mSD iden-
tifies groups of unequal size (92 good and 55 poor prognosis
patients) whereas the risk-score analysis identified groups of
equal size (68 good and 69 poor prognosis patients). Despite this
underlying algorithmic difference, these data show that the 2
classifiers concur on the classifications for the majority of
patients and that the few divergent classifications are not strongly
biased according to any clinical covariates.

Prognostic Signature Cross-Validation. By using the normalized
dataset, each of the 147 patients was sequentially removed from
the sample. The mSD algorithm was then trained on the
remaining 146 patient samples to select a prognostic subset of
genes, as outlined above. The Euclidean distance between the
expression profile of the omitted patient and the median ex-
pression profiles of the good and poor prognosis groups of
patients were then calculated. The patient was classified into the
nearer of these 2 groups, and the entire procedure was repeated
147 times so that each patient was omitted once. A survival curve
of the resulting classifications was then plotted, and a stage-
adjusted Cox proportional hazards model fitted as above. Cross
validation was performed in R (v2.4.1) by using the survival
package (v2.31).

Independent Validation Datasets. Four independent, publicly avail-
able datasets were used to validate the 6-gene classifier identified
by modified steepest-descent (5–8). These datasets were not
used to select the 158 genes in our study and thus each constitutes
an independent validation dataset. Two validation datasets were
generated by using Affymetrix microarrays (7, 8) and two using
custom cDNA arrays (5, 6). Two are comprised primarily of
adenocarcinomas (5, 7) and two exclusively of squamous cell
carcinomas (6, 8). In each case, the normalized data were
downloaded from the Gene Expression Omnibus (GEO) repos-
itory. ProbeSets or spots representing the genes involved in the
signature were identified by using NetAffx annotation for Af-
fymetrix arrays (7, 8) and BLAST analysis against UniGene build
Hs.199 (5, 6) for cDNA arrays. When multiple ProbeSets for a
single gene were present, the Pearson’s correlation between their
vectors was calculated. If they were strongly correlated (R
�0.75) they were collapsed by averaging; otherwise bl2seq
analysis against the RefSeq mRNA for the gene in question was
used to identify the best match. Median scaling was performed
as described in ref. 9. House-keeping gene normalization was
used for the 2 Affymetrix array platforms, as described above for
the PCR analysis. Because only 2 of the 4 house-keeping genes
used were available on the custom cDNA platforms, this nor-
malization step was omitted.

For each validation dataset, the distance between the expres-
sion profile for each patient and the cluster centers (medians)
identified from the training dataset were calculated. A patient
was classified into the nearer cluster if the ratio of the distances
between the profile and the 2 clusters was at least 0.9. This
quality criterion was not used for the 2 studies with small sample
sizes where 1 signature gene was not present on the array
platform (5, 6). The resulting classifications were then tested to
determine whether our prognostic signature resulted in signifi-
cant survival differences by using Cox proportional hazards
model with adjustment for stage in R (v2.4.1) by using the
survival library (v2.33) as previously described.
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Pooled Validation. Several smaller expression studies of nonsmall
cell lung cancer were also available but, because of their limited
number of patients, were not useful as validation datasets. To
leverage these resources, we combined all patients from the 4
studies described above, along with datasets from the Mayo
Clinic and Washington University (10), and 2 additional studies
of mRNA expression in NSCLC (11, 12). In each of these cases,
the raw data (CEL files) were downloaded and preprocessed by
using the RMA algorithm (13) as implemented in v1.6.7 of the
BioConductor affy package (14) for the R statistical environ-
ment (v2.1.1). One dataset (11) included highly-correlated tech-
nical replicates for some samples, which were collapsed through
ProbeSet-wise averaging. The resulting dataset of 589 patients
was then subject to the same nearest-centre classification de-
scribed above. Survival between the 2 groups was tested by using
Cox proportional hazards model with adjustment for stage. The
normalized data and clinical annotations for all patients used in
this article are presented in Table S2.

Permutation Analysis. To determine the number of 6-gene clas-
sifiers (signatures) that could be generated from our 158-gene
expression dataset, we performed a large permutation analysis.
We tested the prognostic capability of 10 million combinations
of 6 genes. For each signature we used the methodology de-
scribed above: k-means clustering to divide patients into 2 groups
and log-rank analysis to estimate the separation between the 2

groups. Study of all combinations is not possible for larger subset
sizes because of the combinatorial explosion. This analysis was
performed in the R statistical environment (v2.6.1) by using the
survival package (v2.34).

To test each signature we used the clusters defined in our
training cohort to classify patients from 4 additional datasets (7,
8, 11, 12), again by using Euclidean distances and log-rank
analysis. The normalized data for each of these datasets was
extracted for the genes in each signature. Euclidean distances
were calculated between each patient and the centre of the 2
training clusters, and the patient was classified into the nearest
cluster. Survival differences between good and poor prognosis
clusters were then assessed by using log-rank analysis.

Finally, to consider the generalizability of each prognostic
signature across all 4 testing datasets, we used percentile anal-
ysis. First, for visualization purposes we calculated and plotted
the Gaussian kernel density of prognostic signatures in each
validation dataset. Next, we calculated the percentile rank of
each signature in each of the 4 validation datasets. The product
of these ranks provides an estimate of the overall validation of
a classifier across all 4 datasets, and we plotted the Gaussian
kernel densities of these ranks. The performance of the 6-gene
mSD-signature was then treated in the same manner and its
location marked on plots with an arrow to indicate its perfor-
mance relative to the distribution of all potential prognostic
markers.
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Fig. S1. Outline of the mSD procedure. The modified steepest-descent algorithm has 2 components: a prognosis-prediction component and a feature-selection
component. First, given a set of one or more features, mSD estimates prognosis in a semisupervised way. Patients are clustered using k-medians clustering into
2 groups and the survival difference between these 2 groups is measured with the �2 output of a log-rank test. Features are ranked according to this �2 statistic.
Second, features are selected by using a gradient-descent approach. The initial feature is chosen based on the univariate ranking of all features. After this
initiation phase, features are added one-by-one by greedy descent. Once a local minimum has been reached, the algorithm terminates.
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Fig. S2. Clustering of the training dataset. The expression profiles of the 6-genes from the mSD-signature for the 147 patients of the training dataset were
subjected to unsupervised pattern-recognition. Agglomerative hierarchical clustering by using complete linkage was performed. The columns represent genes
and the rows represent individual patients. The 6 genes all show unique expression patterns, as indicated by the long terminal arms of the column dendrogram.
Patients do not fall into 1 or 2 large clusters, but rather into a diversity of small, nonlinear ones, as indicated by the row dendrogram.
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Fig. S3. Classifier validation in a pooled dataset. Data from 8 studies was pooled into a dataset of 589 patients. The 6-gene classifier separated all (A) and stage
I patients (B) into groups with significantly different survival. The number of patients at risk in each molecularly-defined group is indicated at each time-point.
The stage-adjusted hazard ratio (HR) and P value (Wald test), and the number of patients successfully classified (N) are also shown.
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Other Supporting Information Files

Table S1 (PDF)
Table S2 (PDF)
Table S3 (PDF)
Table S4 (PDF)
Table S5 (PDF)

Fig. S4. Summary of validation datasets. A number of public NSCLC datasets exist. These datasets are listed along the top of the chart, while various papers
are listed along the side, identified by the first author. Each dataset is annotated according to which studies used it. Training datasets are marked with gray,
whereas validation datasets are marked with solid black. The current study is highly validated, assessing 8 distinct datasets. Some key clinical characteristics of
each dataset are listed. AD � adenocarcinoma. SQ � squamous cell carcinoma.
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