Supporting Information

Rubin et al. 10.1073/pnas.0808776106

Fig. 51. Schematic diagram of the model. Reciprocally coupled neurons motivated by respiratory neurons of the mammalian preBötC were equipped with Hodgkin-Huxley-style "fast" Na⁺ and delayed-rectifier K⁺ currents (I_{Na} , I_{K}), and a K⁺-dominated leakage current (I_{Leak}). I_{Na} , I_{K} , and I_{Leak} are shaded gray to indicate that their role is mostly in setting resting potential and generating spikes. As discussed in the text, the bursting dynamics in the model depend on a Ca²⁺-activated nonspecific cationic current (I_{CAN}), material balance equations that determine the intracellular concentrations of Ca²⁺ and Na⁺, and some type of activity-dependent net outward current (Figs. 3 and 4 and Figs. S3 and S4). In the basic model illustrated, the net outward current is mediated by an Na/K ATPase pump (I_{pump}), as analyzed in Figs. 3, S3A, and S4A. Other net outward currents included a voltage-dependent M-like K⁺ current (I_{Ar} , Fig. 4*B* and Figs. S3 and S4C), and voltage-dependent inactivation of inward persistent Na⁺ current (I_{NaP} , Fig. 4*C* and Figs. S3*D* and S4D).

Fig. S2. Robustness parameter study in the self-coupled model with I_{pump} . Burst period (*Left*) and interburst interval (*Right*), plotted over the range of each parameter for which the self-coupled neuron generated rhythmic bursts. Such bursts were defined as trajectories analogous to Fig. 3D, with a pair of AH crossings followed by a pair of SNIC crossings in the (Ca²⁺-Na⁺) plane in each period. Each parameter value was normalized relative to its default value (see *Derivation of the model*, *SI Appendix*). The parameters varied include: g_{CAN} (squares), g_{syn} (upward triangles), k_{IP3} (circles), k_{ca} (downward triangles), and r_{pump} (diamonds).

Fig. S3. Simulations of the self-coupled model using different net outward currents, showing that the parameters g_{CAN} , g_{Syn} , and k_{IP3} and the currents they influence are critical, regardless of which activity-dependent net outward current is used in the model. (*A–D*) Sets of 4 time courses of model outputs. Each sweep consists of 3 traces: membrane potential (*Upper*, black), Ca²⁺ (*Lower*, black), and the model-specific slow variable (*Lower*, blue, superimposed with Ca²⁺ dynamics). The upper sweep in each panel serves as control and lists default standard parameter values for latency, g_{CAN} , g_{Syn} , and k_{IP3} . Subsequent (*Lower*) sweeps in each panel each show results given by varying one or more of the parameters from the control condition. (*A*) I_{pump} model with Na⁺ as the slow variable. (*B*) I_{M} model with n_M as the slow variable. (*C*) I_{K-Ca} model with z_{K-Ca} as the slow variable. (*D*) I_{NaP} model with h_{NaP} as the slow variable.

Fig. S4. Rhythmic burst activity in large-scale network models. Each panel consists of a raster diagram (*Top*) showing the spike times of 200 simulated neurons, the voltage trajectory of a representative neuron (*Middle*), the average membrane voltage for all neurons in the network (*Bottom*, black) along with the average slow variable (blue). (*A*–*D*) Network activity with different activity-dependent outward currents including I_{pump} , where average Na⁺ concentration is the slow variable (*A*), M-like K⁺ current (I_{M}), where average n_{M} is the slow variable (*B*), Ca²⁺-dependent K⁺ current (I_{K-Ca}), where average z_{K-Ca} is the slow variable (*C*), and persistent Na⁺ current (I_{NaP}), where average h_{Na-P} is the slow variable (*D*).

Fig. S5. Respiratory rhythm generation in vitro. (*A*) On-cell patch recording of a preBötC neuron (*Upper*) with inspiratory motor discharge recorded from the hypoglossal (XII) motor nerve root (*Lower*). (*B*) Whole-cell recording conditions in the same cell as A (*Upper*) with XII motor output (*Lower*). Baseline membrane potential was -60 mV. (*C*) Two consecutive cycles in a representative preBötC neuron (top trace) with XII motor output (lower trace). Ramp-like depolarization and EPSPs occur 300-1000 ms before the inspiratory phase; spiking occurs in the final 300 ms before the inspiratory phase. Voltage-dependent spike inactivation, i.e., depolarization block, is visible during the inspiratory bursts. Temporal summation of EPSPs and low-rate (\approx 5–10 Hz) spiking activity in the preBötC shows evidence for recurrent synaptic excitation during respiratory rhythmogenesis. Broken lines indicate the region of the recording that is expanded in the *Inset*. (*Inset*) Illustrates temporal summation of EPSPs and preinspiratory spiking in greater detail.

Other Supporting Information Files

SI Appendix