
Biochem. J. (2009) 418, 285–292 (Printed in Great Britain) doi:10.1042/BJ20081637

SUPPLEMENTARY ONLINE DATA Active site substitutions delineate distinct classes of eubacterial flap endonuclease

Lee M. ALLEN¹, Michael R. G. HODSKINSON¹ and Jon R. SAYERS²

The University of Sheffield School of Medicine and Biomedical Sciences, Henry Wellcome Laboratories for Medical Research, Department of Infection and Immunity, Sheffield S10 2RX, U.K.

Figure S1 Multiple sequence alignment of FEN-like paralogues

We examined available sequence depositions with GenBank, based on local sequence alignment (TBLASTN), restricted to organisms recently identified as carrying a Poll FEN paralogue [1]. ClustalW alignments were prepared and coloured using ClustalX annotation [2]. Sequence conservation is depicted by histograms, where yellow represents most highly conserved residues, with strictly conserved residues denoted by asterisks. The absolute conservation of carboxylate ligands at metal site I are highlighted, additionally boxed in black. The two sub-classes are defined by dashed boxes; ExoIX family members in blue and FEN family members in red. A double motif was identified to define ExoIX, based around the active site substitutions: STDKG (position 190) and GISSS (position 250), with randomised probabilities of 8.7e⁻⁰⁷ and 1.4e⁻⁰⁶ respectively [3].

© 2009 The Author(s)

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

¹ These authors contributed equally to this work.

² To whom correspondence should be addressed (email j.r.sayers@shef.ac.uk).

REFERENCES

 Fukushima, S., Itaya, M., Kato, H., Ogasawara, N. and Yoshikawa, H. (2007) Reassessment of the *in vivo* functions of DNA polymerase I and RNase H in bacterial cell growth. J. Bacteriol. **189**, 8575–8583

Received 14 August 2008/29 October 2008; accepted 11 November 2008 Published as BJ Immediate Publication 11 November 2008, doi:10.1042/BJ20081637

- 2 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R. et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948
- 3 Combet, C., Blanchet, C., Geourjon, C. and Deleage, G. (2000) NPS@: network protein sequence analysis. Trends Biochem. Sci. 25, 147–150

© 2009 The Author(s)

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.