Supporting Information

Hanson et al. 10.1073/pnas.0810318105

Fig. S1. Enzymatic remodeling of hCD2ad. Numbers under glycoforms indicate the percent of each glycoform in the mixture.

A. Individual digest (14h)

**Coomassie Blue Stain

DNAS

B. Double digest, Endo H & D, time course:

**SilverSnap Stain

C. ConA purification of Endo digested fCD2i

**SilverSnap Stain

Fig. S3. Representative hCD2ad variant kinetic plots and fits. Residuals are shown as insets.

Stability from Thermodynamics			Stability from Kinetics	
∆G _{f,0}	m _{eq}	n	ΔG _{f,0}	m _{eq}
(kcal/mol)	(kcal/mol M)		(kcal/mol)	(kcal/mol M)
-1.6±0.4	1.5 ± 0.2	2	-1.5±0.1	$1.62\pm0.091.53\pm0.141.57\pm0.141.66\pm0.08$
-1.8±0.3	1.4 ± 0.1	2	-1.6±0.1	
-2.9±0.2	1.6 ± 0.1	3	-2.9±0.2	
-3.2±0.8	1.5 ± 0.2	3		
-3.5±0.8	1.8 ± 0.3	2	-2.5±0.1	
	$G_{f,0}$ kcal/mol) 1.6 ± 0.4 1.8 ± 0.3 2.9 ± 0.2 3.2 ± 0.8 3.5 ± 0.8	$\begin{array}{cccc} m_{eq} & m_{eq} \\ kcal/mol) & (kcal/mol M) \\ \hline 1.6\pm0.4 & 1.5\pm0.2 \\ \hline 1.8\pm0.3 & 1.4\pm0.1 \\ \hline 2.9\pm0.2 & 1.6\pm0.1 \\ \hline 3.2\pm0.8 & 1.5\pm0.2 \\ \hline 3.5\pm0.8 & 1.8\pm0.3 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Fig. S4. Representative hCD2ad variant urea denaturation curves. Stabilities obtained by equilibrium thermodynamics and kinetics are in agreement, which is a good indication of 2-state behavior.

<

Fig. S5. hCD2ad variant 1 urea/proline denaturation/renaturation surface and fit. Points represent experimental F_{320} values and the surface represents the fit to these values. F_{320} is measured in arbitrary units.

Table S1. MS characterization of hCD2ad glycoforms from HEK cells (hCD2ad variant 3)

N-glycan type	MS _{found}	RA	Structure
Hybrid	15,441	100	GlcNAcMan ₅ GlcNAc ₂
Complex	15,646	79	LacNAc ₂ ManGlcNAc ₂
Oligomannose	15,372	67	Man ₆ GlcNAc ₂
Complex	15,793	60	LacNAc ₂ ManGlcNAc ₂ + Fuc
Hybrid	15,591	60	LacNAc ₂ Man ₅ GlcNAc ₂
Hybrid	15,282	56	$LacNAc_2Man_4GlcNAc_2$

RA, relative abundance

PNAS PNAS

Table S2. MS characterization of hCD2ad insect glycoforms

PNAS PNAS

N-glycan type		RA			
	MW _{expected}	Sf9-1	Sf9-2	Sf9-3	Tn5
Man ₃ GlcNAc ₂ (Fuc)	15,031	74	70	70	55
Man ₆ GlcNAc ₂	15,373	15	24	20	28
Man ₃ GlcNAc ₂	14,887	10	6	20	10
Man ₇ GlcNAc ₂	15,535	1		2	7

Sf9-1 to Sf9-3 and Tn5 are four preparations of hCD2ad variant 4. % RA, percentage of total relative abundance. Sf9-1 to -3 represent different preparations of hCD2ad from Sf9 host. Tn5 is a different insect expression host; see *SI Appendix*.

Table S3. MS characterization of remodeled hCD2ad variants (see Fig. 1C and Fig. S1)

hCD2ad variant	MW _{expected}	MW _{found}	%	Structure	Enzyme step
5, sample 1	14,344	14,342	72	FucGlcNAc	Endo D cut
		14,195	28	GlcNAc	
5, sample 2	14,344	14,342	75	FucGlcNAc	Endo D/H cut
		14,195	25	GlcNAc	
6	14,708	14,709	44	Man ₁ GlcNAc ₂ (Fuc)	α -Mannosidase
		14,870	25	Man ₂ GlcNAc ₂ (Fuc)	
		14,723	17	Man ₂ GlcNAc ₂	
		14,559	14	Man ₁ GlcNAc ₂	
7	15,373	15,371	90	Man ₆ GlcNAc ₂	Endo D uncut
		15,533	10	Man ₇ GlcNAc ₂	
G	14,197	14,196		GlcNAc	Endo H cut
Paucimannose	15,034	15,031	100	Man ₃ GlcNAc ₂ (Fuc)	Endo H uncut
PNGase A or F treated	13,994	13,994	100	Asn65Asp	PNGase

Other Supporting Information Files

Dataset S1 SI Appendix

PNAS PNAS