
SI Appendix

Neuronal models
E cell: We use the pyramidal cell model of Ermentrout and Kopell (1998),
which is a reduction of a model due to Traub & Miles (1991):

C
dV

dt
= gNam∞(V )3h(VNa − V ) + gKn

4(VK − V ) + gL(VL − V ) + I ,(1)

dn

dt
=

n∞(V )− n
τn(V )

, (2)

h = max(1− 1.25n, 0) , (3)

with

x∞(V ) =
αx(V )

αx(V ) + βx(V )
for x = m or n, (4)

τx(V ) =
1

αx(V ) + βx(V )
for x = n, (5)

αm(V ) =
0.32(V + 54)

1− exp(−(V + 54)/4)
,

βm(V ) =
0.28(V + 27)

exp((V + 27)/5)− 1)
,

αn(V ) =
0.032(V + 52)

1− exp(−(V + 52)/5))
,

βn(V ) = 0.5 exp(−(V + 57)/40) .

In Equations (1)–(2), the letters C, V , t and τ , g, and I denote capacitance
density, voltage, time, conductance density, and current density, respectively.
The units that we use for these quantities are µF/cm2, mV, ms, mS/cm2, and
µA/cm2. For brevity, units will usually be omitted from here on. The parameter
values of the model are C = 1, gNa = 100, gK = 80, gL = 0.1, VNa = 50,
VK = −100, and VL = −67.

I cells: For fast-spiking PV-positive interneurons, we use the Wang & Buzsaki
(1996) model:

C
dV

dt
= gNam∞(V )3h(VNa − V ) + gKn

4(VK − V ) + gL(VL − V ) + I ,(6)

dn

dt
=

n∞(V )− n
τn(V )

, (7)

dh

dt
=

h∞(V )− h
τh(V )

, (8)



with

x∞(V ) =
αx(V )

αx(V ) + βx(V )
for x = m,h or n, (9)

τx(V ) =
0.2

αx(V ) + βx(V )
for x = h or n, (10)

The rate functions αx and βx, x = m,h, and n, are defined as follows:

αm(V ) =
0.1(V + 35)

1− exp(−(V + 35)/10))
,

βm(V ) = 4 exp(−(V + 60)/18) ,
αh(V ) = 0.07 exp(−(V + 58)/20) ,

βh(V ) =
1

exp(−0.1(V + 28)) + 1
,

αn(V ) =
0.01(V + 34)

1− exp(−0.1(V + 34))
,

βn(V ) = 0.125 exp(−(V + 44)/80) .

The parameter values, using the same units as for the E cell, are C = 1, gNa =
35, gK = 9, gL = 0.1, VNa = 55, VK = −90, and VL = −65.

T cells: For the theta interneurons, we use the model described in Tort et
al. (2007), which is a reduction of the multi-compartmental O-LM cell model
described in Saraga et al. (2003):

C
dV

dt
= gNam

3h(VNa − V ) + gKn
4(VK − V ) + gAab(VA − V )

+ghr(Vh − V ) + gL(VL − V ) + I , (11)

with

dx

dt
=

x∞(V )− x
τx(V )

for x = m,h, n, a, b, r . (12)

For x = m,n, h, the functions x∞(V ) and τx(V ) are the same as in (4) and (5),
and the rate functions αx and βx, are defined as follows:



αm(V ) =
−0.1(V + 38)

exp(−(V + 38)/10)− 1
,

βm(V ) = 4 exp(−(V + 65)/18) ,
αh(V ) = 0.07 exp(−(V + 63)/20) ,

βh(V ) =
1

1 + exp(−(V + 33)/10)
,

αn(V ) =
0.018(V − 25)

1− exp(−(V − 25)/25)
,

βn(V ) =
0.0036(V − 35)

exp((V − 35)/12)− 1
.

For x = a, b, r, we provide the functions x∞(V ) and τx(V ) below:

a∞(V ) =
1

1 + exp(−(V + 14)/16.6)
,

τa(V ) = 5 ,

b∞(V ) =
1

1 + exp((V + 71)/7.3)
,

τb(V ) =
1

0.000009
exp((V−26)/18.5) + 0.014

0.2+exp(−(V +70))/11)

,

r∞(V ) =
1

1 + exp((V + 84)/10.2)
,

τr(V ) =
1

exp(−14.59− 0.086V ) + exp(−1.87 + 0.0701V )
.

The parameter values are C = 1.3, gL = 0.05, gNa = 30, gK = 23, gA = 16,
gh = 8, VNa = 90, VK = −100 , VA = −90, Vh = −32, VL = −70.

Synaptic model: Each synaptic input was modeled as a current of the form
Isyn,XY = GXY /NXs(V − Vsyn), where X and Y denote the type of the pre
and post-synaptic cell, respectively (ie, X,Y = E, I or T), GXY is the maximal
synaptic conductance, NX is the number of X cells, V is the membrane potential
of the post-synaptic cell, and Vsyn is the reversal potential. The variable s is a
normalized double-exponential function characterized by rise (τrise) and decay
(τdecay) time constants. The synapses were implemented using the Exp2Syn()
built-in function of NEURON. The IPSPs originating from the T cells synapses
were slower than IPSPs originating from the I cells synapses; we used τrise =
2 ms, and τdecay = 22 ms for T synapses, τrise = 0.07 ms and τdecay= 9.1
ms for I synapses, and τrise = 0.05 ms and τdecay = 5.3 ms for E synapses.
The reversal potential was set to 0 mV for E synapses and to -80 mV for T



and I synapses. We used GII = 0.01, GTI = 0.15, GIT = 0.2, GIE = 0.05,
GTE = 0.15, GEI = 0.05, GET = 0.07, IE = U(1.9, 2.1), II = 0.3, IT = 0. The
model KO network is obtained by setting GTI and GII equal to zero.

Model Local Field Potential: The model local field potential (LFP) con-
sisted of the membrane potential of a “passive” E cell programmed inside the
network. This cell receives the same synaptic inputs as the “active” E cell. How-
ever, this cell does not send any synaptic output onto other cells and, moreover,
it also does not spike given that its external drive current is set to zero. The
model LFP was analyzed in MATLAB (The MathWorks, Inc. Natwick, MA).
Power spectrum density was obtained using the Welch’s averaged periodogram
using a 6 s window length with 50% overlap (pwelch() function from the Signal
Processing toolbox). Gamma (40-80 Hz) and theta (5-9 Hz) filtered signals were
obtained by using a linear finite impulse response (FIR) filter (eegfilt() function
from the EEGLAB toolbox; Delorme and Makeig, 2004). The amplitude and
phase of the filtered signals were obtained from the the Hilbert transform. The
instantaneous gamma frequency was calculated from the inter peak intervals of
the gamma filtered signal. The theta-phase was binned into 18 intervals (i.e.,
bin size = 20o), and the mean gamma frequency and amplitude were computed
for each theta-phase bin.

Numeric and Random Aspects: All simulations were carried out using the
NEURON simulation program version 5.9 (Hines and Carnevale, 1997) with
a time step of 25 µs. As initial conditions, the membrane potential of each
cell was uniformly distributed between -85 and -60 mV and the channel-gating
variables were set to their corresponding steady-state values. Each cell was
further randomized using an IClamp of random uniform magnitude and random
uniform duration between 0 and tsyn/2, where tsyn=500 ms is the time when
synapses were turned on. For each of the 50 trials, the total simulation time
was of 12 s, and the last 10 s were used for the analysis. In each trial, the E
cell drive was chosen from a uniform distribution between 1.9 and 2.1 µA/cm2;
therefore, the exact gamma peak frequency varied from trial to trial.
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