
Passage of known and proposed targets in the targetTB pipeline

An account of the passage of known targets (previously reported in literature) through the targetTB pipeline. The
putative targets are classified based on their broad functional categories. A, B, C, E, F, G, H, I, J and K refer to the
different filters depicted in Fig. 1 and described in the text. ‘3’ indicates that the given protein passes the filter, while a ‘5’
indicates a failure. A ‘?’ indicates that the analysis was not performed due to lack of appropriate data, while ‘–’ indicates
that the protein was not passed through the filter due to failure at a previous stage. All proteins in the H-list indicated in
Fig. 3 would have a ‘3’ at levels A–H. ‘l’ indicates the additional lists (I/J/K) in which a target from the H-List is present.

Target Remarks
targetTB pipeline

A B C E F G H I J K

I. Cell Wall Biosynthesis
DdlA (Rv2981c) Known target of cycloserine [1] 3 3 5 3 3 3 5 l l l
FtsZ (Rv2150c) Suggested as possible drug target [2, 3] 3 3 3 3 3 5 5 l l l

Arabinogalactan biosynthesis
EmbA (Rv3794) Known target for ethambutol [4, 5] 3 3 3 3 3 3 3 l l l
EmbB (Rv3795) –do– 3 3 ? 3 3 3 5 l l l
EmbC (Rv3793) –do– 3 3 3 3 3 3 3 l l l
GlfT1 (Rv3782) Suggested as possible target [6, 7] 3 3 3 3 3 3 3 l l l
GlfT2 (Rv3808c) Suggested as important target for the development of new anti-tuberculosis drugs [8];

suggested as possible target [6, 7]
3 3 3 3 3 3 3 l l l

Glf (Rv3809c) Suggested as important target for the development of new anti-tuberculosis drugs [8] 3 3 3 3 3 5 5 l l l
Peptidoglycan biosynthesis

AftA (Rv3792) Suggested as an attractive target [9] 3 3 5 3 3 3 5 l l l
AftB (Rv3805c) Suggested as a potential target [10] 3 3 3 3 3 3 3 l l l

MurG (Rv2153c) Suggested as a potential target [11] 3 3 3 3 3 3 3 l l l
MurX (Rv2156c) –do– 3 3 3 3 3 3 3 l l l
RmlA (Rv0334) Important in synthesis of dTDP-rhamnose [12] 3 3 3 5 3 5 5 l l l
RmlB (Rv3464) Suggested as potential target [12] 3 5 – 3 3 5 5 l l l
RmlC (Rv3465) Suggested as potential target [12] 3 3 3 3 3 3 3 l l l
RmlD (Rv3266c) Important in synthesis of dTDP-rhamnose [12] 3 3 3 3 3 3 3 l l l

Wag31 (Rv2145c) Identified as novel target [13] 3 3 3 3 3 3 3 l l l

II. Lipid Metabolism
Mycolic acid biosynthesis

FabH (Rv0533c) Possible target of thiolactomycin; also suggested as potential target [14, 15] 3 3 3 3 3 3 3 l l l
FabD (Rv2243) Suggested as a potential target [16–18] 3 3 3 3 3 3 3 l l l
AcpM (Rv2244) Induced on isoniazid treatment [16,19] 3 3 3 3 3 3 3 l l l
Pks13 (Rv3800c) Suggested as a promising target against Corynebacterineae [20] 3 3 3 3 3 3 3 l l l
InhA (Rv1484) Known target for isoniazid, ethionamide [21] 3 3 3 3 3 3 3 l l l

MabA (Rv1483) Recommended as a possible rational target [22,23] 5 5 – 3 3 3 5 l l l
KasA (Rv2245) Possible target of thiolactomycin [24]/isoniazid [25] 3 5 – 3 3 3 5 l l l
KasB (Rv2246) Possible target of thiolactomycin [24] 3 5 – 3 3 3 5 l l l
PcaA (Rv0470c) Suggested as a possible target of thiacetazone [26] 3 3 3 3 3 3 3 l l l

CmaA2 (Rv0503c) –do– 3 3 3 3 3 3 3 l l l
MmaA1 (Rv0645c) –do– 3 3 3 3 3 3 3 l l l
MmaA2 (Rv0644c) –do– 3 3 3 3 3 3 3 l l l
MmaA3 (Rv0643c) –do– 3 3 3 3 3 3 3 l l l
MmaA4 (Rv0642c) Suggested as a possible target of thiacetazone [26]; suggested as a possible target [27] 3 3 3 3 3 3 3 l l l
FadD32 (Rv3801c) Suggested as a promising target [28] 3 3 3 3 3 3 3 l l l
AccD4 (Rv3799c) Suggested as a promising target [28] 3 5 – 3 3 3 5 l l l
AccA3 (Rv3285) Suggested as a possible target [29] 3 5 – 3 3 3 5 l l l
AccD5 (Rv3280) Suggested as a possible target [29] 3 5 – 3 3 5 5 l l l
AccE5 (Rv3281) Suggested as a possible target [29] 3 3 ? 3 3 3 5 l l l
DesA3 (Rv3229c) Suggested as a possible target [30] 3 3 ? 3 3 3 5 l l l

Fas (Rv2524c) Possible target of pyrazinamide [31] 3 3 3 3 3 3 3 l l l

III. Intermediary Metabolism and Respiration
AdoK (Rv2202c) Suggested as a good bioactivator/pro-drug target [32]; suggested as potential drug

target [33]
3 3 3 3 3 3 3 l l l

(Rv1347c) Suggested as a valid drug target [34] 3 3 3 5 3 3 5 l l l
Dxr (Rv2870c) Suggested as a highly promising drug target [35] 3 3 5 3 3 3 5 l l l

HadA (Rv0635) HadAB is an exciting target [36] 3 3 3 3 3 3 3 l l l
HadB (Rv0636) HadAB, HadBC are exciting targets [36]; likely target of dehydratase inhibitors in

M. bovis [37, 38]
3 3 3 3 3 3 3 l l l

HadC (Rv0637) HadBC is an exciting target [36] 5 3 – 3 3 3 5 l l l
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HisE (Rv2122c) Suggested as potential drug target [39] 3 3 3 5 3 5 5 l l l
Nat (Rv3566c) Inhibition of Nat contributes to anti-mycobacterial activity of Warburgia salu-

taris [40]
3 3 3 3 3 3 3 l l l

ThyX (Rv2754c) Suggested as potential target in several organisms [41] 3 3 3 3 3 3 3 l l l
Tmk (Rv3247c) Suggested as potential drug target [42,43] 3 3 3 3 3 3 3 l l l
Tpi (Rv1438) Suggest the design of drug exploiting difference with the host enzyme [44] 3 5 – 3 3 3 5 l l l

Nucleotide biosynthesis
GuaB1 (Rv1843c) Suggested as a drug target in several organisms [45] 3 3 3 3 3 3 3 l l l
GuaB2 (Rv3411c) –do– 3 3 5 3 3 3 5 l l l
GuaB3 (Rv3410c) –do– 3 3 3 3 3 3 3 l l l

RelA (Rv2583c) Important in the survival of Mtb during nutrient starvation [46,47] 5 3 – 3 3 5 5 l l l
Amino acid biosynthesis

Ald (Rv2780) Suggested as potential drug target [48] 3 3 5 3 3 3 5 l l l
Asd (Rv3708c) Suggested as an attractive drug target [49] 3 3 3 3 3 5 5 l l l

DapA (Rv2753c) Stated as an important drug target [50] 3 3 3 3 3 3 3 l l l
DapC (Rv0858c) Enzymes of lysine biosynthesis pathway are potential target candidates [51] 3 3 3 3 3 3 3 l l l

GlnA1 (Rv2220) Essential for Mtb virulence [52] 3 3 5 3 3 5 5 l l l
LysA (Rv1293) Lysine auxotroph has vaccine potential [53]; suggested as potential target [54] 3 3 3 3 3 3 3 l l l
LeuD (Rv2987c) ∆leuD mutant unable to replicate in macrophages in vitro [55] 3 3 3 5 3 5 5 l l l
ProC (Rv0500) Essential for Mtb virulence [56] 3 5 – 3 3 3 5 l l l
TrpD (Rv2192c) –do– 3 3 3 5 3 3 5 l l l
LeuA (Rv3710) Suggested as potential target [57] 3 3 3 3 3 3 3 l l l
DapB (Rv2773c) Suggested as potential target [58] 3 3 3 5 3 5 5 l l l
AroA (Rv3227) Genes of the shikimate pathway suggested as potential targets [59–61] 3 3 3 5 3 3 5 l l l
AroB (Rv2538c) Shikimate pathway suggested as an attractive target [62] 3 3 3 3 3 3 3 l l l
AroE (Rv2552c) Suggested as a potential target [63] 3 3 3 3 3 3 3 l l l
AroF (Rv2540c) Suggested as a potential target [64] 3 3 3 3 3 3 3 l l l
AroG (Rv2178c) Genes of the shikimate pathway suggested as potential targets [59,65] 3 3 3 3 3 3 3 l l l
AroK (Rv2539c) Genes of the shikimate pathway suggested as potential targets [59,60] 3 3 3 3 3 3 3 l l l
AroQ (Rv0948c) Suggested as a promising target [66] 5 3 – 3 3 3 5 l l l

*AroQ (Rv1885c) Suggested as a novel target [67]; suggested as a promising target [66] 3 3 3 3 3 3 3 l l l
FbpB (Rv1886c) Important promoter region for AroQ [66] 3 3 3 3 3 3 3 l l l
ArgA (Rv2747) Essential enzyme catalysing initial step of arginine biosynthesis [68] 3 3 3 3 3 3 3 l l l
ArgC (Rv1652) Suggested as potential target [69] 3 3 3 3 3 3 3 l l l
AlrA (Rv3423c) Known target of Cycloserine [1] 3 3 5 3 3 3 5 l l l

Cofactor biosynthesis
DfrA (Rv2763c) Important drug target in many pathogens [70]. Suggested as drug target in [70,71] 3 5 – 3 3 3 5 l l l
PanB (Rv2225) Critical for pantothenic acid synthesis [72] 3 3 3 3 3 3 3 l l l
PanC (Rv3602c) Critical for pantothenic acid synthesis [72]; suggested as potential target [73] 3 3 3 3 3 3 3 l l l
PanD (Rv3601c) Critical for pantothenic acid synthesis [72]; suggested as potential target [74] 3 3 5 3 3 3 5 l l l
PanK

/CoaA
(Rv1092c) Prokaryotic enzymes involved in the synthesis of CoA are good targets [75]; [76] 3 3 3 3 3 3 3 l l l

Dfp
/CoaBC

(Rv1391) Prokaryotic enzymes involved in the synthesis of CoA are good targets [75] 3 3 3 3 3 3 3 l l l

RibC (Rv1412) Promising target [77, 78]; inhibition of enzymes involved in riboflavin biosynthesis
provides a rational strategy for antibiotic drug design [79]

3 3 3 5 3 3 5 l l l

RibH (Rv1416) –do– 3 3 3 3 3 3 3 l l l
Mycothiol biosynthesis

MshA (Rv0486) Essential for production of GlcNAc-Ins and growth in Mtb [80]; enzymes involved in
mycothiol biosynthesis suggested as potential targets [81–84]

5 3 – 3 3 3 5 l l l

MshB (Rv1170) Important enzyme in mycothiol biosynthesis [85]; mycothiol biosynthetic pathway
could constitute novel and important drug targets [83]; proposed as target [86]

3 3 3 3 3 3 3 l l l

MshC (Rv2130c) Required for mycothiol production and is essential for Mtb survival [81]; Enzymes
involved in mycothiol biosynthesis suggested as potential targets [81–84]

3 5 – 3 3 3 5 l l l

MshD (Rv0819) Enzymes involved in mycothiol biosynthesis suggested as potential targets [81–84];
survival of Mtb MshD mutants is severely compromised in activated and non-
activated macrophages [87]

3 3 3 3 3 3 3 l l l

Sulphur Metabolism
CysH (Rv2392) Catalyses the first committed step in the biosynthesis of reduced sulphur compounds.

CysH is actively expressed during the dormant phase of Mtb and in the environment
of macrophages [88, 89]. Humans do not reduce sulfate for de novo cysteine
biosynthesis and therefore do not have a CysH equivalent; hence can be an attractive
drug target [90–93]; CysH is important for Mtb protein during latent infection [94]

3 3 3 3 3 3 3 l l l

Mca (Rv1082) Critical role in mycobacterial detoxification of antibiotics [95] 5 3 – 3 3 3 5 l l l
Sulphate assimilation enzymes

CysT (Rv2399c) Attractive targets, as many of these have no homologues in humans [90] 3 3 3 3 3 3 3 l l l
CysW (Rv2398c) –do– 3 3 3 3 3 3 3 l l l
CysA (Rv2397c) –do– 3 5 – 3 5 5 5 l l l
SubI (Rv2400c) –do– 3 3 5 3 3 3 5 l l l

CysN (Rv1286) –do– 3 3 5 3 3 3 5 l l l
CysD (Rv1285) –do– 3 3 3 3 3 3 3 l l l
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CysC (Rv1286) –do– 3 3 5 3 3 3 5 l l l
NirA (Rv2391) –do– 3 3 3 3 3 3 3 l l l
CysK (Rv2334) –do– 5 5 – 3 3 5 5 l l l
CysM (Rv1336) –do– 5 3 – 3 3 3 5 l l l

CysM3 (Rv0848) –do– 3 3 3 3 3 3 3 l l l
Terpenoid biosynthesis

IspD (Rv3582c) Potential drug target [96] 3 3 3 3 3 3 3 l l l
IspE (Rv1011) –do– 3 3 3 3 3 3 3 l l l
IspF (Rv3581c) Potential drug target [96]; attractive target in many pathogens [97] 3 3 3 3 3 3 3 l l l

Glyoxylate shunt
Icl (Rv0467) Required for persistence of Mtb in macrophages and mice [98]; suggested as an

attractive target [99]. Icl1 and Icl2 are required for fatty acid catabolism and
virulence in Mtb [100]

3 3 3 3 3 5 5 l l l

AceAB (Rv1916) 5 3 – 3 3 3 5 l l l
CitE (Rv2498c) May be useful as drug target [101] 5 5 – 3 3 3 5 l l l

ATP Synthesis
AtpE1 (Rv1305) Inhibited by a diarylquinoline drug R207910 in vitro [102] 3 3 3 3 3 3 3 l l l

Menaquinone Biosynthesis
MenA (Rv0534c) Possibly an essential nutrient for Mtb [103] 3 3 ? 3 3 3 5 l l l
MenB (Rv0548c) –do– 3 3 3 3 3 5 5 l l l
MenC (Rv0553) –do– 3 3 3 3 3 3 3 l l l
MenD (Rv0555) –do– 3 3 3 3 3 3 3 l l l
MenE (Rv0542c) –do– 3 3 3 3 3 3 3 l l l
MenH (Rv0558) –do– 3 3 3 3 3 3 3 l l l

Cytochrome P450s
Cyp121 (Rv2276) Putative essential gene. Possible role in virulence through studies with ∆AraC/XylS

gene regulator mutant (∆Rv1931c) [104]. Induced in isoniazid- and thiolactomycin-
treated Mtb [105]

3 3 3 3 3 3 3 l l l

Cyp125 (Rv3545c) Induced in macrophages. Essential for infection in mice [106] 5 3 – 3 3 3 5 l l l
Cyp128 (Rv2268c) Possible essential gene. Required for Mtb growth in vitro. Expression upregulated

post-starvation [104]
3 3 3 3 5 3 5 l l l

Cyp130 (Rv1256c) Absent from M. bovis BCG vaccine strain (deletion RD13) [104] 5 3 – 3 3 3 5 l l l
Cyp132 (Rv1394c) Possible role in Mtb virulence. Transcription controlled by adjacent AraC transcrip-

tional regulator [104,107]
3 3 3 3 5 3 5 l l l

Cyp141 (Rv3121) Absent from M. bovis BCG vaccine strain (deletion RD12) [104] 5 3 – 3 3 3 5 l l l
Cyp144 (Rv1777) Possible role in virulence [104] 3 3 5 5 5 3 5 l l l

IV. Information Pathways
DNA Synthesis

NrdB (Rv0233) Ribonucleotide reductases (RNRs) are attractive targets for anti-proliferative
drugs [108] and subunit vaccines [109] in other organisms [110]

5 3 – 3 3 3 5 l l l

NrdE (Rv3051c) Mtb RNR is a potential drug target; inhibition of RNR in a variety of mycobacterial
species substantially alters the growth patterns of the organisms [111]; suggested as
potential target [112] [110]

3 3 5 3 3 5 5 l l l

NrdF1 (Rv1981c) [110] 3 3 3 3 3 5 5 l l l
NrdF2 (Rv3048c) Potential target [112] [110] 3 3 3 3 3 5 5 l l l

LigA (Rv3014c) Stated as a novel, validated and attractive drug target [113–115]; suggested as a
possible drug target [116]

3 3 3 5 3 3 5 l l l

GyrA (Rv0006) Known target of fluoroquinolones [117,118] 5 3 – 3 3 5 5 l l l
GyrB (Rv0005) –do– 3 3 5 3 3 5 5 l l l
RpoB (Rv0667) Known target of rifampicin [119] 3 3 3 3 3 5 5 l l l
RpsL (Rv0683) Known target of Streptomycin [120] 3 5 – 3 3 5 5 l l l

V. Regulatory proteins
GlnE (Rv2221c) Essential for growth of Mtb [121] 3 3 3 3 3 3 3 l l l
MtrA (Rv3246c) Essential for growth of Mtb [122] 5 3 – 3 3 3 5 l l l
DevR (Rv3133c) Two-component system is a novel target in dormant mycobacteria [123]; essential

for growth of Mtb under conditions of low oxygen [124]
3 3 3 5 3 3 5 l l l

DevS (Rv3132c) Two-component system is a novel target in dormant mycobacteria [123]; part of the
DevR-DevS two-component signal transduction system [124,125]

3 3 3 3 3 3 3 l l l

PknA (Rv0015c) Possibly essential for mycobacterial growth and hence possible targets [126] 3 5 – 3 5 3 5 l l l
PknB (Rv0014c) –do– 3 3 3 3 5 3 5 l l l
PknG (Rv0410c) Crucial virulence factor [127]; possibly essential for mycobacterial growth and hence

possible targets [126]
3 3 5 5 3 3 5 l l l

PtpB (Rv0153c) Possible target [128] 5 3 – 5 3 3 5 l l l
Iron Acquisition

MbtA (Rv2384) An important adenylation enzyme required for siderophore biosynthesis [129] 3 3 5 3 3 3 5 l l l
IdeR (Rv2711) Suggested as target [130,131] 5 3 – 3 3 5 5 l l l
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