
Supplemental Material 

Comparison of receptive fields to polar and Cartesian stimuli computed with two kinds of 
models 

Motivation 

The purpose of this analysis is to verify that context dependent changes in receptive fields of V1 
neurons observed previously (Victor et al., 2006) for Cartesian and polar stimulus sets did not depend 
on assumptions of the model used to compute the receptive fields. To achieve this, here we compare 
receptive fields computed with two different modeling approaches, which are complimentary in 
several respects. According to the first model (Victor et al., 2006), the neural response is a sum of 
three elements: one element is the projection of the stimulus onto a sensitivity profile L. The second 
element is the projection of the stimulus onto a second sensitivity profile E, followed by full-wave 
rectification (i.e., absolute value). The third element is a baseline firing rate.  With the assumption that 
the combination of these three signals is always suprathreshold, the spatial weighting function L can 
be found explicitly, as a linear combination of all basis function stimuli, each weighted by the number 
of spikes that it elicited, essentially a reverse-correlation analysis. The contribution of each basis 
function to the full-wave-rectified pathway (E-filter) was determined from the average of the response 
to that basis function and its contrast-inverse.  

Together, the sizes and shapes of the L-filter and the E-filters provide a complete account of the 
responses to a single basis set (Cartesian or polar) of the two-dimensional Hermite stimuli. In the text, 
we focus on the L-filters since they are robustly and unambiguously determined.  The E-filter cannot 
be determined uniquely– the signs of its projections onto the basis function stimuli are ambiguous.  
However, its overall power is unambiguous, and we use this power to compare the shape of the 
nonlinearity inferred from this model to the nonlinearity inferred from the second model, described 
below. 

According the second model (de Boer and Kuyper, 1968; Rieke et al., 1997; Schwartz et al., 2006), 
the neural response to each stimulus is a nonlinear function N of the projection of that stimulus onto a 
spatial weighting M. In this case, M-filter can be determined by the method of maximally informative 
dimensions (MID) (Sharpee et al., 2004), and the shape of the nonlinear function N need not be 
specified a priori. 

For both models, we simply use the spike count during stimulus presentation (0 to 250 ms) as the 
response measure.  The rationale for this simplification is the empirical finding (Victor et al. 2006, 
Figure 13) that for these stimuli, response timecourse is virtually identical, for both Cartesian and 
polar stimuli. 

If the neural response is determined by a linear spatial weighting of the stimulus, followed by 
asymmetric rectification (i.e., a nonlinear function that has different slopes for positive and negative 
inputs), then both models will provide an adequate, equivalent, fit. In this case, the L- and E-filters 
obtained by reverse correlation will be identical and will match the maximally-informative-dimension, 
M-filter. In addition, the weighting of the L- and E-filters will determine the shape of the nonlinearity N 
identified by the MID method.  Finally, all of these filters will be independent of whether the analysis is 
based on responses to Cartesian or polar stimuli.   

However, in an LN model, the nonlinearity need not be asymmetric rectification.  If the departure is 
large, reverse correlation will only approximate the linear filter, while the MID method will correctly 
identify it. Thus, a neuron might appear to have context-dependent changes in its receptive field 
profile when analyzed by reverse correlation, but MID would identify a single, context-independent, 



LN model. (Such a nonlinearity would also have to depart strongly from a quadratic function as well, 
because of an equal-energy property of the Hermite functions.) 

Conversely, for a neuron whose computations require more than a single LN pathway for accurate 
depiction (Fairhall et al., 2006; Felsen et al., 2005; Rust et al., 2005; Touryan et al., 2005; Touryan et 
al., 2002), the M-filter extracted by MID provides a compromise among the relevant stimulus features. 
This compromise, and thus the M-filter, might be context-dependent even if context only affects the 
relative contributions of different stimulus features, and not the feature profiles themselves.  The 
reverse correlation approach allows for two pathways, with separate spatial filters – and thus is 
expected to reduce this confound. 

The two modeling approaches are also complementary in their computational properties. Reverse 
correlation is an explicit calculation, linear in the data (after removal of maintained firing rate), and 
consequently is typically robust in the face of noisy responses. The MID approach requires a global 
optimization in a high-dimensional space (implemented by simulated annealing (Sharpee et al., 
2004).  The possibility of local optima exist, and the high dimensionality of the problem lead to a lower 
precision in the inferred filter shapes, as we see below. On the other hand, for idealized LN neurons 
with a purely even-symmetric nonlinearity, the L-filter is undefined and the E-filter cannot be 
determined unambiguously (Victor et al. 2006), while the MID approach may still be successful, as 
was demonstrated on model cells (Sharpee et al., 2004). 

Comparison of spatial profiles determined by reverse correlation and MID. When probed with 
Cartesian stimuli, most neurons had the same receptive field profiles as determined by reverse 
correlation (L-filters) and MID (M-filters). This was also true when neurons were probed with polar 
stimuli. To quantify the difference between the filters estimated by the two methods, we calculated a 
correlation coefficient of the filters determined from the Cartesian stimuli (Supplementary Figure 1A) 
and the polar stimuli (Supplementary Figure 1B).  White indicates cells whose correlation coefficients 
were consistent with no difference in receptive fields profiles as determined by reverse correlation 
and MID, while gray (black) shows cells with significant changes at p=0.05 (0.01) level.  Correlation 
coefficients were debiased, and their confidence limits estimated, via a jackknife method (Efron, 
1998), see Methods).  By this statistical test, 44 out of 51 neurons had consistent (p>0.05) receptive 
field shapes with the two methods when probed with Cartesian stimuli, and 42 out of 51 neurons had 
consistent receptive field shapes when probed with the polar stimuli. 

In Supplementary Figure 1 we also show examples of receptive fields with correlations coefficients 
close to 1 (panels C and D) and far from 1 (panels E and F).  Note that even for correlation 
coefficients that are far from 1, there is a strong resemblance between the L- and M-filters. That is, 
the debiasing appears to be “conservative” in the sense that the correlation coefficients plotted in 
Supplementary Figure 1 appear to underestimate the similarity of the estimated receptive fields. 

Comparison of the shape of the nonlinearity determined by reverse correlation and MID 

The two modeling methods can also be compared by the shapes of the nonlinearity they predict. For 
each model, we constructed a measure of the asymmetry of the nonlinear gain function. For the 
model determined by reverse correlation, we used the normalized difference in power between the L-
filter of the linear channel and the E-filter of the full-rectified channel:  
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(computed as the square root of the total power across components). For cells that are linear, |E|=0, 
so the asymmetry index is 1. For cells that are well-modeled by a linear filter followed by a half-wave 
rectifier (threshold-linear), |L|=|E|, so the asymmetry index is 0. For full-wave-rectifying (ON-OFF) 
cells, |L|=0 so the asymmetry index is -1. 

For the MID model, we used the asymmetry index 

( ) ( )0 0/MA f f f f− += − − − ,       (4) 

where f+ and f- represent the average firing rate for all stimuli with positive and negative projections 
onto the receptive field, respectively, and f0 represents the firing rate for stimuli that are either blank 
or orthogonal to the receptive field. The index MA   takes the same values as the index LEA  for 
idealized linear, threshold-linear, and full-wave-rectifying cells. For a fully linear cell, 
( )0 0f f f f− +− − = − , so that both indices (3,4) are equal to 1. For a cell with the threshold-linear gain 

function (|L|=|E|),  both 0f  and f−  are close to zero, so that 0MA =  For full-wave-rectifying cells, 
f f− += , so 1M LEA A= = − . 

Supplementary Figure 2 shows that the two asymmetry indices are tightly correlated with each other 
for both Cartesian and polar stimuli, despite the differences in modeling assumptions.  There is a 
small offset between the values of the indices obtained with the two approaches, with all neurons 
appearing slightly more linear with the reverse correlation method than with MID.  Most likely this is 
because the reverse correlation method fits the linear and nonlinear components separately, while 
the MID method (as implemented here) fits them with a single pathway.  However, this difference has 
little impact on our analysis of context-dependence, since our analysis focuses on the spatial aspects 
of the receptive field, rather than the shape of the nonlinearity. 

Supplementary Figure 1. Receptive fields computed from responses to two-dimensional 
Hermite functions are largely the same for the two models. Distribution of correlation coefficients 
between receptive fields computed by reverse correlation (L-filters) and MID (M-filters). Panel A, 
receptive fields derived from responses to Cartesian stimuli; panel B: receptive fields derived from 
responses to polar stimuli. Cells with no significant changes (p>0.05) are shown in white, those with 
significant changes in gray (0.01<p<0.05) and black (p<0.01). The abscissas indicate the filters 
whose profiles are compared: Lcart – linear filter derived from reverse correlation of Cartesian 
responses; Mcart – filter derived from MID analysis of Cartesian responses; Lpolar – linear filter derived 
from reverse correlation of polar responses; Mpolar – filter derived from MID analysis of polar 
responses.  Debiasing (see Methods) can result in estimated correlation coefficients < 0.  Panels C-
G: Receptive fields Lcart , Mcart , Lpolar , Mpolar derived from representative cells. Correlation coefficients 
comparing filters calculated by the different methods are as follows: (C) Cartesian stimuli: 0.99±0.04, 
polar stimuli: 0.99±0.02 (both p>0.05); (D) Cartesian stimuli: 0.60±0.50, polar stimuli: 0.3±0.5 (both 
p>0.05); (E) Cartesian stimuli: cc<0 (p<0.01), polar stimuli: 0.99±0.01 (p>0.05); (F) Cartesian stimuli: 
cc<0 (p<0.01); polar stimuli: 0.97±0.07 (p>0.05). Note that even when the correlation coefficients are 
statistically different from 1 (e.g., panels E and F, Cartesian comparisons), the receptive field 
estimates are qualitatively similar. Color-scale is the same for the four receptive fields pertaining to a 
neuron, but varies across panels. For each panel (neuron), it covers the range from the minimal to the 
maximal value across the four receptive field estimates. 

Supplementary Figure 2. Agreement between the shape of the nonlinearity for the two models.  
For each cell, we compare the shape of the inferred nonlinearity via the asymmetry index measured 



by reverse correlation (Eq. 3) and the asymmetry index measured by MID (Eq. 4). The solid line 
indicates equality. Circles: Cartesian stimulus sets; crosses: polar stimulus sets. 

Supplementary Figure 3. Comparison of precision of estimation of receptive fields by reverse 
correlation (L-filters) and MID (M-filters). For each cell, we compare an estimate of the uncertainty 
of the receptive fields as determined by the two modeling approaches.  Uncertainty is quantified by 
the rms difference between receptive field computed based on all of the data and the jackknife 
estimates obtained by dropping each trial. The uncertainties of the M-filters are larger than the 
uncertainties of the L-filters. The solid line has the slope of one. Circles: Cartesian stimulus sets; 
crosses: polar stimulus sets. 

Supplementary Figure 4. Stimulus dependent differences between even and odd-rank 
components are not due to symmetry assumptions. Two random sets of normalized filters were 
generated. Panel A shows the best rotation matrix between the two sets of randomly generated 
receptive fields. The same number (n=51) of receptive fields was used in these simulations as with 
real data. Panel B shows the best rotation matrix after the two sets of receptive fields were expanded 
by the symmetry operation described in the text. Other aspects of plots are as in Figures 4 and 5. As 
expected, matrix elements that violate parity constraints are suppressed in Panel B (the various off-
diagonal blocks of zeroes).  However, the on-diagonal blocks for even and odd ranks persist. 
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