Supplemental Data

PEROXISOME DEFICIENCY CAUSES A COMPLEX PHENOTYPE DUE TO HEPATIC SREBP/INSIG DYSREGULATION ASSOCIATED WITH ENDOPLASMIC RETICULUM STRESS

Werner J. Kovacs, Khanichi N. Tape, Janis E. Shackelford, Thomas M. Wikander, Michael J. Richards, Steven J. Fliesler, Skaidrite K. Krisans and Phyllis L. Faust

Enzyme	Enzyme activity (pmol/min/mg of protein) in:		Ratio of
	Control mice	PEX2 ^{-/-} mice	activities
HMG-CoA reductase	57.1 ± 4.6 (4)	32.9 ± 3.2 (3) **	0.6
IPP isomerase	218.0 ± 5.0 (4)	343.2 ± 62.7 (3) *	1.6
FPP synthase	297.4 ± 30.0 (4)	466.9 ± 84.5 (3) *	1.6
Squalene synthase	2.1 ± 0.4 (4)	3.1 ± 0.9 (3)	1.5

TABLE S1. Activities of cholesterol biosynthetic enzymes in kidneys of P9 BA-fed control and *PEX2* knockout mice

Each value represents the mean \pm standard deviation. Values in parentheses denote the number of samples. The measured activities in BA-fed mice did not significantly differ from that in untreated mice (Kovacs et al., 2004). *, P < 0.01; **, P < 0.001 (Student's *t* test). Ratio of activities = $PEX2^{-//}$ /control.

Gene	Gene Symbol	Relative expression	GenBank	
Cholesterol Synthesis, Uptake, & Metabolism				
Acetoacetyl-CoA synthetase	Aacs	2.4	NM_030210	
Acetyl-CoA synthetase 2	Acas2	7.2	NM 019811	
ATP citrate lyase	Acly	10.1	NM 134037	
HMG-CoA synthase *	Hmgcs1	3.5	NM ⁻ 145942	
HMG-CoA reductase *	Hmgcr	15.7	NM_008255	
Mevalonate kinase	Mvk	21.6	NM_023556	
Mevalonate pyrophosphate decarboxylase	Mvd	62.7	NM_138656	
Isopentenvl-diphosphate Λ isomerase *	Idi1	12.4	NM 145360	
Farnesyl diphosphate synthese *	Fnns	11.9	NM 134469	
Squalene epoxidase *	Sale	36.4	NM_009270	
I anosterol synthase *	Iss	44.2	NM 146006	
Lanosterol 1/a demethylase	Cyn51	15.8	NM_020010	
Storal C4 mathyl avidaga lika	Cyp51 So4mol	27.9	NM_025436	
NAD(D) demondent storeid dehudrogenege	SC4IIIOI Nadhl	27.8	NM_010041	
hAD(P) dependent steroid denydrogenase-	Insum	70.0	INIVI_010941	
178 Hydroxysteroid dehydrogenese 7	Hsd17b7	3.5	NM 010476	
20 Hydrowysteroid A8 A7 isomoroso	Ebn	5.5 A 1	NM 007808	
Sp-Hydroxysteroid- $\Delta \delta$, $\Delta /$ -isomerase	Eup	4.1	NM_007898	
7 Debudue de de stavel ve de stave *	5050 D17	2.0	NM_1/2/09	
/-Denydrocholesterol reductase *	Dhcr/	1.7	NM_00/856	
24-Denydrocholesterol reductase	Dncr24	2.3	NM_053272	
Insig-1 *	Insigi	12	NM_153526	
Proprotein convertase subtilisin/kexin type 9	Pcsk9	6.9	NM_153565	
LDL receptor *	Ldlr		NM_010700	
Fatty Acid, TG, & PL Synthesis				
Fatty acid synthase *	Fasn	43	NM 007988	
Malic enzyme	Mod1	69	NM_008615	
Acetyl-CoA carboxylase beta	Acc2	16.0	BC022940	
Long-chain fatty acyl elongase	Flovl6	3.4	NM 130450	
Stearoyl-CoA desaturase 2	Scd2	24.5	NM_009128	
Glycerol-3-nhosnhate acyltransferase	Gnam	43	NM_008149	
Eatty acid desaturase 2	Eads?	2.6	NM_019699	
L specific multifunctional b-oxidation	Fhhadh	122.8	NM_023737	
protein *†	Elinadii	122.0	NNI_023737	
Miscellaneous				
Mac30		3	NM_133706	
Aldolase C	Aldoc		NM_009657	
Retinol dehydrogenase 11	Rdh11	*	NM_021557	
Trefoil factor-3, intestinal	TFF3	2.9	NM_011575	
Carbonyl reductase-1	Cbr1	15.2	NM_007620	
Aldehyde dehydrogenase family-1,	ALDH1A7	4.7	NM_011921	
subfamily A7			-	
Diazepam binding inhibitor *	Dbi	2.0	NM 007830	
Cysteine sulfinic acid decarboxylase	Csad	1.3	NM ¹⁴⁴⁹⁴²	
5			—	

TABLE S2. Expression of SREBP regulated genes in the liver of P9 *PEX2^{-/-}* mice

Total RNA was isolated from five P9 wild-type and *PEX2^{-/-}* livers using the RNeasy Mini kit (Qiagen). Equal aliquots of total RNA from each of five mouse livers in each group were pooled and prepared for CodeLink oligonucleotide hybridization. Hybridization, washing, scanning, and analysis of the CodeLink Mouse 20K Bioarray (Amersham Biosciences) were carried out at the Biomedical Genomics Microarray Facility at the University of California San Diego. The relative mRNA expression of each gene in livers from *PEX2^{-/-}* mice compared to the appropriate wild-type controls is shown.

* Gene expression changes that have been verified by one or more methods, i.e. northern gel analysis, quantitative RT-PCR.

 \ddagger Genes highly expressed in *PEX2*^{-/-} mice but undetectable in wild-type mice.

† L-specific multifunctional β-oxidation protein is a peroxisomal enzyme involved in the oxidation of very long-chain fatty acids and the increased expression in $PEX2^{-7}$ mice probably occurred through the activation of PPARα as a response to increased fatty acid levels. Whether it is a direct target of SREBP-1 is unknown.

Figure S1. Relative amounts of various mRNAs in livers from P9 and P36 BA-fed control and $PEX2^{-/-}$ mice. RNA was analyzed by qRT-PCR as described in Fig. 4. Values represent the amount of mRNA relative to that in BA-fed control mice at the respective time point, which was arbitrarily defined as 1. Values are mean \pm standard deviation from RNA samples of at least five individual mice, except for P36 untreated *PEX2* knockout, where n = 1. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001 vs. BA-fed control mice (Student's *t* test).

Figure S2. Induction of UPR target genes in livers from P9 untreated and BA-fed control and *PEX2^{-/-}* mice. Total RNAs were isolated and subjected to Northern Blot analysis. The same blot was hybridized sequentially with Grp78, Herpud1, CHOP, GADD45, p8, and 28S rRNA probes. The amount of radioactivity in each band was quantified by PhosphorImager analysis and normalized to that in control mice, which was arbitrarily defined as 1.

6

