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General Information. All the reactions were carried out under an atmosphere of 
nitrogen or argon in oven-dried glassware with magnetic stirring. THF was dried using a 
double alumina column.  LDA and LiHMDS were purchased from Aldrich as 1.0 M 
solutions in THF.  β-Ketoesters, triflic anhydride, and chloro silanes were purchased from 
Acros and TCI America and used without further purification. Purification of reaction 
products was carried out by flash column chromatography using Flash Silica gel 40-63μ.  
Analytical thin layer chromatography was performed on 0.25mm silica gel 60-F plates.  
Visualization was accomplished with UV light and aqueous potassium permanganate 
solution staining followed by air heating. 
 

1H NMR and 13C NMR were recorded on a 400 MHz NMR spectrometer and are 
reported in ppm using solvent as internal standard.  Data are reported as: (b = broad, s = 
singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet; coupling constant(s) 
in Hz, integration). 
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General procedure for conjugate alkyne synthesis 
 

To a round bottom flask (50 mL) under argon was added dry THF (7 mL) and LiHMDS 
(4 mL, 1.0 M in THF).  The solution was then cooled to -78 ˚C (acetone-dry ice bath) 
followed by the addition of β-keto ester (2 mmol).  After stirring for 45 min, triflic 
anhydride (2 mmol) was added slowly over 15 min.  The reaction was then stirred 
overnight slowly warming to room temperature and quenched with saturated NH4Cl 
solution.  The organic layer was separated, the aqueous fraction was extracted with ether, 
and the organic layers were combined and dried with anhydrous Na2SO4.  The product 
was purified by silica gel chromatography in the usual manner using 1-2% EtOAc in 
hexanes.  Products 2a,1 2b,2 and 2c3 are reported in the literature and compared favorably 
with our own NMR spectra of these compounds. 
 
Ethyl hex-2-ynoate (2d) 1H NMR (400MHz, CDCl3) δ 4.22 (q, J = 7.14 Hz, 2H), 2.31 (t, 
J = 7.1 Hz, 2H), 1.66-1.57 (m, 2H), 1.31 (t, J = 7.14 Hz, 3H), 1.02 (t, J = 7.38 Hz, 3H); 
13C NMR (100 MHz, CDCl3) δ 153.8, 89.2, 73.2, 61.7, 21.0, 20.5, 14.0, 13.4; HRMS 
calc. for C8H12O2 [M+H]+: 141.0910. Found: 141.0899. 
 

CO2Et

2d  
 
Ethyl hept-2-ynoate (2e) 1H NMR (400MHz, CDCl3) δ 4.21 (q, J = 7.05 Hz, 2H), 2.34 
(t, J = 7.06 Hz, 2H), 1.61-1.53 (m, 2H), 1.49-1.39 (m, 2H), 1.31 (t, J = 7.05 Hz, 3H), 
0.92 (t, J = 7.41 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 153.9, 89.4, 73.1, 61.7, 29.5, 
21.9, 18.3, 14.0, 13.5; HRMS calc. for C9H14O2 [M+H]+: 155.1067. Found: 155.1061. 
 

CO2Et

2e  
 
 
Procedure for synthesis of alkynyl ester 8 
 

To a round bottom flask (50 mL) under argon was added dry THF (7 mL) and LiHMDS 
(4 mL, 1.0 M in THF).  The solution was then cooled to -78 ˚C (acetone-dry ice bath) 
followed by the addition of β-keto ester (2 mmol).  After stirring for 45 min, BnBr (2 
mmol) was added dropwise followed by warming slowly to room temperature over the 
course of 6 h.  The reaction mixture was then cooled to -78 ˚C and charged with 
LiHMDS (2 mL, 1.0 M in THF).  After for 45 min, Tf2O (2 mmol) was added slowly 
over 15 min and the reaction was stirred overnight slowly warming to room temperature 
and quenched with saturated NH4Cl solution.  The organic layer was separated, the 
aqueous fraction was extracted with ether, and the organic layers were combined and 
dried with anhydrous Na2SO4.  The product was purified by silica gel chromatography in 
the usual manner using 1-2% EtOAc in hexanes. 
 
                                                 
1 Fisher D. F.; Xin, Z.; Peters, R. Angew. Chem. Int. Ed. 2007, 46, 7704. 
2 Tokuda, M.; Nishio, O. J. Org. Chem. 1985, 50, 1592. 
3 Frimer, A. A.; Antebi, A. J. Org. Chem. 1980, 45, 2334. 
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Ethyl 5-phenyl-pent-2-ynoate (8) 1H NMR (400MHz, CDCl3) δ 7.40-7.22 (m, 5H), 4.21 
(q, J = 7.2 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 2.61 (t, J = 7.6 Hz, 2H), 1.30 (t, J = 7.2 Hz, 
3H); 13C NMR (100 MHz, CDCl3) δ 154.0, 139.9, 128.8, 128.6, 126.9, 88.5, 73.9, 62.1, 
34.1, 21.1, 14.3; HRMS calc. for C13H14O2 [M+H]+: 203.1067. Found: 203.1059. 
 

CO2Et

8
Ph

 
 
 
 
General procedure for deconjugated alkyne/conjugated allene isomers via 
monoanionic enyne enolate 
 

To a round bottom flask (50 mL) under argon was added dry THF (7 mL) and LiHMDS 
(4 mL, 1.0 M in THF).  The solution was then cooled to -78 ˚C (acetone-dry ice bath) 
followed by the addition of β-keto ester (2 mmol).  After stirring for 45 min, triflic 
anhydride (2 mmol) was added slowly over 15 min.  The reaction was maintained at -78 
˚C with stirring for an additional 1 h followed by the addition of LiHMDS (2 mmol). The 
mixture was stirred at -78 ˚C for an additional 30 min followed by the addition of HMPA 
(7 mmol).  After an additional 30 min at -78 ˚C, the reaction was quenched by pouring 
into an ice-cold stirring biphasic mixture of ether and saturated aqueous NH4Cl.   

Depending on the substrate, the reaction may lead to mixtures of deconjugated alkyne 
and conjugated allene which are inseparable by ordinary flash chromatography.  
Furthermore, deconjugated alkynes 9e – 9h isomerize rapidly to conjugated allenes on 
silica gel.  In such cases, compounds were analyzed as crude mixtures to determine 
product ratios and then chromatographed to obtain combined isolated yields. 
 
Products 9a, 10a,4 10e,5 10f,6 10g,7 10i,8 and 10j9 are reported in the literature and 
compared favorably with our own NMR spectra of these compounds. 
 
Ethyl pent-3-ynoate (9b) 1H NMR (400MHz, CDCl3) δ 4.19 (q, J = 7.13 Hz, 2H), 3.22 
(q, J = 2.58 Hz, 2H), 1.83 (t, J = 2.58 Hz, 3H), 1.28 (t, J = 7.13 Hz, 3H); 13C NMR (100 
MHz, CDCl3) δ 168.8, 78.9, 70.4, 61.2, 25.8, 20.8, 3.3; HRMS calc. for C7H10O2 
[M+H]+: 127.0754. Found: 127.0742. 
 

CO2Et

9b  
 
 
                                                 
4 Commercially available 
5 Jung, E. M.; Nishimura, N. Org. Lett. 2001, 3, 2113. 
6 Jones, E. R. H.; Whitham, G. H.; Whiting, M. C. J. Chem. Soc. 1957, 4628. 
7 Bloschista, F. A.; Burmakov, A. I.; Kunshenko, B. V.; Alekseeva, L. A.; Yagupolskii, L. M. Zhurnal 
Organicheskoi Khimii 1982, 18, 782. 
8 Himbert, G.; Fink, D.; Diehl, K. Chemische Berichte 1988, 121, 431. 
9 Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 3836.   
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Ethyl hex-3-ynoate (9c) 1H NMR (400MHz, CDCl3) δ 4.19 (q, J = 7.12 Hz, 2H), 3.25 (t, 
J = 2.43 Hz, 2H), 2.21 (tt, J = 7.51, 2.46 Hz, 2H), 1.28 (t, J = 7.12 Hz, 3H), 1.14 (t, J = 
7.50 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 168.9, 85.0, 70.7, 61.3, 26.0, 20.3, 14.0, 
12.4; HRMS calc. for C8H12O2 [M+H]+: 141.0910. Found: 141.0907.  
 

CO2Et

9c  
 
Ethyl hept-3-ynoate (9d) 1H NMR (400MHz, CDCl3) δ 4.18 (q, J = 7.23 Hz, 2H), 3.25 
(t, J = 2.51 Hz, 2H), 2.18 (tt, J = 7.09, 2.51 Hz, 2H), 1.57-1.48 (m, 2H), 1.28 (t, J = 7.23 
Hz, 3H), 0.98 (t, J = 7.39, 3H); 13C NMR (100 MHz, CDCl3) δ 168.9, 83.6, 71.5, 61.3, 
26.0, 22.6, 22.1, 14.0, 13.3; HRMS calc. for C9H14O2 [M+H]+: 155.1067. Found: 
155.1061.  

Pr
CO2Et

9d  
 
Ethyl-2-methyl-3-butynoate (9e) and Ethyl-2-methylallenylester (10e) 1H NMR 
(400MHz, CDCl3) δ 5.06 (q, J = 3.16 Hz, 2H), 4.25-4,16 (m, 3H), 3.40 (q, J = 7.23 Hz, 
1H), 1.88 (t, J = 3.15 Hz, 3H), 1.82 (d, J = 3.55 Hz, 1H), 1.42 (d, J = 7.20 Hz, 3H).  
 

•
CO2Et

+
CO2Et

9e 10e  
 
Ethyl-2-n-butyl-3-butynoate (9f) and Ethyl-2-n-butylallenylester (10f) 1H NMR 
(400MHz, CDCl3) δ 4.96 (t, J = 3.1 Hz, 2H), 4.10-4.00 (m, 3H), 3.16 (dd, J = 7.95, 6.56 
Hz, 1H), 2.10-1.96 (m, 3H), 1.70-1.55 (m, 3H), 1.3-1.15 (m, 3H), 1.14-1.06 (m, 6H), 
0.78-0.70 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 212.7, 170.8, 168.9, 103.4, 88.7, 87.2, 
79.6, 62,1, 61.7, 39.9, 32.9, 31.5, 30.9, 30.0, 28.5, 28.0, 23.2, 23.0, 15.1, 15.0, 14.9, 14.7. 
    

•
Bun

CO2Et
+

Bun

CO2Et

9f 10f  
 
Ethyl-2-iso-propyl-3-butynoate (9g) and Ethyl-2-iso-propylallenylester (10g) 1H 
NMR (400MHz, CDCl3) δ 5.13 (d, J = 2.35 Hz, 2H), 4.21-4.16 (q, J = 7.12 Hz, 1H), 
4.13-4.06 (q, J = 7.13 Hz, 2H), 3.14 (d, J = 6.62 Hz, 0.5H), 2.73-2.58 (m, 1.5H), 1.30-
1.20 (m, 5H), 1.03 (d, J = 6.88 Hz, 6H), 0.94 (d, J = 6.62, 1.5H); 13C NMR (100 MHz, 
CDCl3) δ 212.6, 171.0, 166.9, 107.0, 101.1, 88.9, 87.8, 20.7, 20.6, 14.2, 14.1, 14.1. 
 

•
Pri

CO2Et
+

Pri

CO2Et

9g 10g  
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tert-Butyl-2-n-butyl-3-butynoate (9h) and tert-Butyl -2-n-butylallenylester (10h) 1H 
NMR (400MHz, CDCl3) δ 5.05 (t, J = 3.03 Hz, 2H), 3.28 (t, J = 7.33 Hz, 0.4H), 2.29-
2.24 (m, 0.8H), 2.18 (m, 2H), 1.47 (s, 9H), 1.44 (s, 3.6H), 1.45-1.30 (m, 5.6H), 0.91-0.85 
(m, 4.5H). 

•
Bun

CO2But

+
Bun

CO2But

9h 10h  
 
 
 
General procedure for deconjugated alkyne/conjugated allene isomers via 
monoanionic enyne enolate with ZnCl2 additive 
 

To a round bottom flask (50 mL) under argon was added dry THF (7 mL) and LiHMDS 
(4 mL, 1.0 M in THF).  The solution was then cooled to -78 ˚C (acetone-dry ice bath) 
followed by the addition of β-keto ester (2 mmol).  After stirring for 45 min, triflic 
anhydride (2 mmol) was added slowly over 15 min.  The reaction was maintained at -78 
˚C with stirring for an additional 1 h followed by the addition of LiHMDS (2 mmol).  The 
mixture was stirred at -78 ˚C for an additional 30 min followed by the addition of HMPA 
(7 mmol).  After stirring for stirring at -78 ˚C for an additional 30 min, ZnCl2 (2.4 mmol) 
was added as an ether solution.  The reaction was quenched after an additional 30 min by 
pouring into an ice-cold stirring biphasic mixture of ether and saturated aqueous NH4Cl.  
NMR spectra were recorded after workup for each reaction confirming the formation of 
only conjugated allene which were compared with literature references (except for 10h).  
 
tert-Butyl-2-n-butylallenylester (10h) 1H NMR (400MHz, CDCl3) δ 5.05 (t, J = 3.03 
Hz, 2H), 2.18 (m, 2H), 1.47 (s, 9H), 1.45-1.30 (m, 4H), 0.91 (t, J = 7.19 Hz, 3H); 13C 
NMR (100 MHz, CDCl3) δ 213.6, 166.6, 101.7, 80.7, 30.2, 28.0, 27.7, 22.3, 13.9; HRMS 
calc. for C12H20O2 [M+H]+: 197.1542. Found: 197.1543. 
 

•
Bun

CO2But

10h  
 
 
 
General procedures for silylated deconjugated alkyne/conjugated allene isomers via 
dianionic enolate 
 

To a round bottom flask (50 mL) under argon was added dry THF (7 mL) and LiHMDS 
(4 mL, 1.0 M in THF).  The solution was then cooled to -95 ˚C (methanol-liquid N2 bath) 
followed by addition of β-keto ester (2 mmol).  After stirring for 1 h, triflic anhydride (2 
mmol) was added slowly over 15 min.  Since Tf2O is a solid at this reaction temperature, 
the slow addition should be accompanied by vigorous stirring.  Alternatively, Tf2O can 
be added as ether solution (not in THF since this solvent reacts to form polymer at room 
temperature).  The reaction mixture was stirred for an additional 1 h at -95 ˚C followed 
by the addition of LiHMDS (4 mL, 1.0 M in THF).  After an additional 1 h at -95 ˚C, 
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R3SiCl (6 mmol) was added dropwise followed by warming to room temperature over 1 
hour and quenching with saturated NH4Cl solution.  The organic layer was separated, the 
aqueous fraction was extracted with ether, and the organic layers were combined and 
dried with anhydrous Na2SO4.  The product was purified by silica gel chromatography in 
the usual manner using 1-2% EtOAc in hexanes. 
 
Ethyl-2-trimethylsilylhexa-2,3-dienoate (18a) and Ethyl hex-3-ynoate (9c): 1H NMR 
(400MHz, CDCl3) δ 5.33 (t, J = 6.4 Hz, 1H), 4.22-4.15 (m, 6H), 3.25 (t, J = 2.42 Hz, 
4H), 2.21 (qt, J = 7.51, 2.44 Hz, 4H), 2.15-2.07 (m, 2H), 12.8 (t, J = 7.11 Hz, 9H), 1.14 
(t, J = 7.49 Hz, 6H), 1.05 (t, J = 7.35 Hz, 3H), 0.18 (s, 9H); 13C NMR (100 MHz, CDCl3) 
δ 215.0, 168.9, 167.9, 90.1, 88.8, 85.0, 70.7, 61.3, 60.5, 26.0, 20.3, 14.1, 14.0, 13.7, 13.4, 
12.4, -1.2; HRMS calc. for C11H20O2Si [M+H]+: 213.1305. Found: 213.1313.  
 

•
TMS

CO2Et

18a

CO2Et

9c
+

 
 

 
Ethyl-2-triisopropylsilylhexa-2,3-dienoate (18b): 1H NMR (400MHz, CDCl3) δ 5.24 (t, 
J = 6.61 Hz, 1H), 4.16 (q, J = 7.05 Hz, 3H), 2.20-1.05 (m, 2H), 1.34-1.18 (m, 9H), 1.07 
(d, J = 7.40 Hz, 18H); 13C NMR (100 MHz, CDCl3) δ 216.2, 168.6, 91.5, 89.6, 60.7, 
20.9, 18.6, 17.7, 14.2, 12.2; HRMS calc. for C17H32O2Si [M+H]+: 297.2244. Found: 
297.2236. 
 

•
TIPS

CO2Et

18b  
 
 
Product 1910 is reported in the literature and compared favorably with our own NMR 
spectra of this compound. 
 
 

                                                 
10 Lepore, S.D.; He, Y.J.; Damisse, P. J. Org. Chem, 2004, 69, 9171. 
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