Supporting Information

Synthesis and biological activity of human neuropeptide S analogues modified in position 5: identification of potent and pure NPS receptor antagonists

Remo Guerrini[§]*, Valeria Camarda[#], Claudio Trapella[§], Girolamo Calo^{!#}, Anna Rizzi[#], Chiara

Ruzza[#], Stella Fiorini[§], Erika Marzola[§], Rainer K. Reinscheid[¶], Domenico Regoli[#],

and Severo Salvadori§.

Table of Contents:

- S2: analytical properties of the [X⁵]NPS analogues
- S4-S19 mass spectra of NPS and analogues
- S20-S35 analytical HPLC chromatograms of NPS and analogues obtained using system I
- S36-S51 analytical HPLC chromatograms of NPS and analogues obtained using system II

		^a t _r		^b MH+	
no	Abbreviated names	Ι	II	calculated	found
	hNPS	9.59	13.06	2188.5	2188.2
1	[Phe ⁵]hNPS	10.65	14.14	2278.6	2278.6
2	[Trp ⁵]hNPS	10.96	13.23	2317.7	2317.2
3	[Leu ⁵]hNPS	9.61	13.63	2244.6	2244.8
4	[Val ⁵]hNPS	10.34	14.51	2230.6	2231.0
5	[Met ⁵]hNPS	10.08	13.98	2262.7	2262.2
6	[Cys ⁵]hNPS	10.07	13.92	2235.6	2235.2
7	[D-Phe ⁵]hNPS	10.46	14.22	2278.6	2278.6
8	[D-Trp ⁵]hNPS	10.76	14.30	2317.7	2318.0
9	[D-Leu ⁵]hNPS	9.54	13.69	2244.6	2244.6
10	[D-Val ⁵]hNPS	9.92	13.92	2230.6	2230.8
11	[D-Met ⁵]hNPS	9.75	14.01	2262.7	2263.6
12	[D-Cys ⁵]hNPS	9.98	13.82	2235.6	2235.4
13	[D-Cys(Acm) ⁵]hNPS	10.68	14.08	2307.7	2307.8
14	[D-Cys(Bzl) ⁵]hNPS	10.92	14.52	2324.7	2324.2
15	[D-Cys(tBu) ⁵]hNPS	10.86	14.34	2291.7	2290.4

Table 1. analytical properties of the $[X^5]$ NPS analogues

^at_r is the retention time determined by analytical HPLC. Retention time I was obtained using a Nucleodur C₁₈ column (4.6 x 100 mm, 2 μ m particle size) with the solvent system A (10%, v/v, acetonitrile in 0.1% TFA) and solvent system B (60%, v/v, acetonitrile in 0.1% TFA). The column was perfused at a flow rate of 0.6 mL / min using a linear gradient from 0% to 70% B over 25 min.

Retention time II was obtained using a Hypersil BDS C_{18} column (4.6 x 150 mm, 5 µm particle size) with solvent system A (35 mM NaH₂PO₄ (pH 2.1)) and solvent system B (59 mM NaH₂PO₄ (pH 2.1)-acetonitrile (60:40 v/v)). The column was perfused at a flow rate of 1 mL/min with a linear gradient from 5% to 70% B over 25 min

^bThe mass ion (MH⁺) was obtained by electro spray mass spectrometry.

Mass spectra of hNPS analogues

hNPS

Compound 1

Compound 2

Compound 4

Compound 5

Compound 6

Compound 7

Compound 8

Compound 9

Compound 10

Compound 12

Compound 13

Compound 14

HPLC cromatograms of hNPS analogues (system I)

Compound 1

Compound 2

Compound 3

Compound 4

Compoud 5

Compound 6

Compound 7

Compound 8

Compound 9

Compound 10

Compound 11

Compound 12

Compound 13

Compound 14

Compound 15

HPLC cromatograms of hNPS analogues (system II)

Compoud 1

Compoud 2

Compoud 3

Compoud 4

Compoud 5

Compoud 6

Compound 7

Compound 8

Compound 9

Compound 10

Compound 11

Compound 12

Compound 14

Compound 15