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1 Supplementary Videos

The videos included with the submission record fluorescent intensity of cells under the condition of parallel

laminar flow. Flow rate was held constant at 45 µL/min and uniform in the period before and during each

experiment. Images were captured at 1 s intervals using a 1600×1200 pixel CCD camera using 2×2 binning,

in gray-scale with 8 bits of resolution. The output videos are shown at 8 frames/sec (8× speed). In order

to facilitate video downloading, the videos have been heavily compressed from the original data. The videos

have been post-processed in Matlab to show a horizontal red line that indicates the estimated position of

the interface when it is within the field of view, and a red field that indicates the area under stimulus.

Video S1

Supplementary Video S1 shows the data presented in Fig. 1e–i and Fig. 4b in the paper body, beginning at

Frame 110 (t = 0 s in Fig. 1). The data threshold was adjusted to better fit the dynamic range of the data

(old range: 0–255, new range: 0–85).

Video S2

Supplementary Video S2 shows the data presented in paper Fig. 2f–j, beginning at Frame 70.

∗Please direct questions about the supplementary materials to this author, bkuczenski@bren.ucsb.edu
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Table S-1: Exposure settings for images presented in this paper.

Figure Objective / Filter Exposure Gain Notes / Post-processing

Paper Body

1b–c 10× 10ms 1×
1d 10× phase-contrast 10ms 1×
1e 63× DIC 55ms 1× sharpening (GIMP edge enhancement) and

thresholding
1f–i 63× FITC 80ms 4× 2×2 binning; high-threshold adjustment

(255→85) (GIMP)
2a 63× FITC 80ms 4× 2×2 binning
2f 63× FITC 60ms 4× 2×2 binning
3a 63× FITC 40ms 4× 2×2 binning
4a 63× FITC 40ms 4× 2×2 binning
4b 63× FITC 80ms 4× 2×2 binning; same experiment as Fig.1f–i
4c 63× FITC 60ms 4× 2×2 binning

Supplementary Videos

S1 63× FITC 80ms 4× 2×2 binning; high-threshold adjustment
(255→85) and overlay added (Matlab);
same experiment as Fig.1f–i, Fig.4b

S2 63× FITC 60ms 4× 2×2 binning; same experiment as Fig.2f; overlay
added (Matlab)

2 Imaging Settings

Included here is a summary of image acquisition data for the images presented in the main body and in the

supplementary videos. Table S-1 summarizes exposure settings for all images.

All Images

All images were acquired using an Axioverttm 200 microscope (Zeiss), a Spot Insighttm camera (Diagnostic

Instruments) with 1600×1200 pixel resolution and a pixel size of 7.3 microns. At 10×, this equates to

0.73 microns per pixel. At 63× this equates to 0.117 microns per pixel. The camera has 8 bits of depth

resolution (grayscale) and includes hardware gain. All image stacks were acquired at uniform exposure and

gain settings.

Fluorescence images were acquired with a Zeiss FITC filter set (Zeiss part number 488010-0000) and a

63× oil-immersion objective. For fluorescence images, 2×2 binning was used, making the effective resolution

800×600 and the effective pixel size 0.235 microns. Gray-scale images are presented in monochrome green.
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Image Processing

Images were not processed prior to data extraction. Images were acquired with Diagnostic Instruments Spot

software and saved as TIFF multi-image stacks. Stacks were opened in NIH ImageJ software, regions of

interest were selected by hand, and mean fluorescent intensity was automatically measured over each region

on each frame. The data were then exported to Matlab, where data presentation was performed. Control

regions were selected that were nominally black. Spikes in the control signals were interpreted as camera

glitches; those data points were removed (no such points were seen in the data presented). Normalization

was performed by dividing data values by the average of the first five data points.

In preparing images for publication, images used in Figure 1 were enhanced for clarity (see Table S-1) in

the GNU Image Manipulation Program (GIMP).

3 Fluid Dynamics

The following section is excerpted from [1].

As a consequence of their small scale, fluid flows in microchannels are highly ordered, and therefore are

well suited to precise mathematical analysis. The following discussion covers the aspects of fluid behavior

that are relevant to the present study. For a complete description of fluid transport in microfluidic systems,

please see [2].

In general, fluid flow is characterized by the ratio of inertial to viscous forces. This ratio can be formalized

in the Reynolds number, a dimensionless parameter given below:

Re =
ρU2

µU/l
=

ρUl

µ
(1)

where ρ and µ represent the fluid’s density and kinetic viscosity, respectively; l represents a characteristic

length of the flow and U represents a characteristic velocity. The characteristic length of closed channel

flow is the hydraulic diameter of the channel, Dh = 4A/P , where A is the cross-sectional area and P is the

wetted perimeter. Note that, in the case of a circular channel, the hydraulic diameter reduces to the channel

diameter. For a rectangular channel whose aspect ratio (width/height) is a, Dh = 2ha/(a + 1), or roughly

2h for high-aspect-ratio channels. The characteristic velocity is the average volumetric velocity, Q/A, where

Q is the volumetric flow rate.

The Reynolds number of a flow determines many of the flow’s qualities; in particular, for Reynolds

numbers below about 2000 the flow is laminar. Particles in laminar flow are dominated by viscous forces, and
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tend to follow smooth, predictable patterns which can be described using a potential equation. Microfluid

flows often have Reynolds numbers around 1 or less, and so are highly laminar, sometimes described as

“creeping flows.”

Channel flow is termed fully-developed when its behavior is consistent with the theoretical behavior of

flow under similar conditions in a channel of infinite length [3]. The distance required for a flow to become

fully developed is called the entrance length, le, and is governed by the Reynolds number. For Reynolds

numbers close to 1, the entrance length has been shown to be described by [4]

le
Dh

=
[

(0.631)1.6 + (0.0442Re)1.6
]1/1.6

(2)

Abrupt changes in channel geometry can disrupt fluid flow, but subsequent flow can be taken as fully

developed after the entrance length.

For the present study, with aqueous solutions and characteristic values of Dh = 100µm and U ≪

100mm/s, Re ≪ 10. A typical entrance length is le ≪ 100µm. Under this flow regime two distinct

transport phenomena become significant: the velocity distribution of advective transport along the axial

dimension of the channel, and the diffusive transport of a trace solute in the plane normal to the channel

axis.

3.1 Velocity Profile

The equations of fluid motion can be derived by modeling the forces upon and material flows through a

differential fluid element (see [3]). They can be stated concisely for Newtonian fluids in the application to

the problem of pressure-driven laminar flow in a uniform microfluidic channel by:

−
dP

dz
+ µ

(

∂2

∂x2
+

∂2

∂y2

)

u = 0 (3)

which is the governing equation for Stokes flow. Assuming symmetric flow and no slip at the channel walls,

taking channel width to be w, height h, and aspect ratio a = w/h, the boundary conditions are

u(w/2, · ) = 0; u( · , h/2) = 0;
du

dx

∣

∣

∣

∣

y=0

= 0;
du

dy

∣

∣

∣

∣

x=0

= 0 (4)

We can nondimensionalize the problem by taking x̄ = x/(ah
2
), ȳ = y/(h

2
), and ū = 8µu/Gh2, where
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G , −dP/dz. Making these changes, the problem becomes

(

1

a

)2
∂2ū

∂x̄2
+

∂2ū

∂ȳ2
= −2 (5)

with appropriate boundary conditions.

It is easy to show that a particular solution of this equation is ūp(ȳ) = 1− ȳ2. It is a little more difficult,

but well within the capabilities of the reader, to show via separation of variables that the solution to the

homogeneous problem is given by

ūh(x̄, ȳ) = −4

∞
∑

k=0

(−1)k

λ3
k

cosh(λkax̄)

cosh(λka)
cos(λkȳ) (6)

where λk = π(2k + 1)/2.

Returning u to dimensional form but retaining dimensionless measurements for position, the final equation

for axial velocity as a function of (x̄, ȳ) coordinates in the channel cross-section is

u(x̄, ȳ) =
Gh2

8µ

[

1 − ȳ2 − 4

∞
∑

k=0

(−1)k

λ3
k

cosh(λkax̄)

cosh(λka)
cos(λkȳ)

]

(7)

In channels with wide aspect ratios, the velocity distribution is parabolic in ȳ and nearly uniform for |x̄| ≪ 1.

This is consistent with the assumption of Hele-Shaw flow far from the channel walls.

If Equation 7 is integrated along each cross-sectional dimension, the result describes volumetric flow rate.

Q =

(

Gah4

12µ

)

(

1 −
6

a

∞
∑

k=0

λ−5

k tanh(λka)

)

(8)

Q = G · κ−1; κ =
12µ

ah4

(

1 −
6

a

∞
∑

k=0

λ−5

k tanh(λka)

)

−1

Continuity requires that the flow rate remain constant along the length of the channel, and so the parameter

κ can be taken to be a fluid resistance per unit length of the channel. Integrating Equation 8 again, this

time along the length of the channel, produces an expression relating the pressure drop along the channel to

the product of the flow rate and the fluid resistance:

GL = −∆P = Q (κL) (9)

This equation can be used for macroscopic modeling of microfluidic device behavior. The formulation in
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Figure S-1: The two flow volumes created by a laminar interface plane.

Equation 9 is analogous to Ohm’s Law for electrical circuits, with fluid pressure replacing electrical potential

and fluid flow replacing electric current.

3.2 The Laminar Stream Interface

Consider a planar microfluidic device in which two channels with separate inlets converge to form a third

channel with a single outlet. If there is positive flow in both inlet channels, then conservation of mass requires

that the flow rate in the outlet channel equals the sum of the two inlet flows. Additionally, preserving the

assumptions from the previous section that hold that the fluid pressure is uniform along every cross-section

and fluid velocity normal to the channel axis is zero everywhere, we can conclude that a fluid that enters

on one side of a microfluidic channel must remain on that side. Consequently, fluids arriving from different

inlets will flow alongside each other in parallel streams without mixing, in volumetric proportion according

to their relative flow rates. Finally, if the two fluids are of identical density and viscosity, the prior result

for the fluid velocity profile (Equation 7) will continue to hold for the multistream flow after the entrance

region.

In this condition the two streams will flow as a single fluid, but they will occupy spatially distinct regions

of the outlet channel based on their originating inlet channels. The interfaces between different regions will

take the form of planes parallel to the channel axis and normal to the plane of the device. The lateral

positions of these interfacial planes are determined by the relative flow rates of the streams and can be

predicted by integrating the volume under the velocity profile on either side of the plane and equating the
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ratio to the ratio of flow rates.

φ =
Q1

Q2

=

∫ x̂

−1

∫ 1

−1
ū(x̄, ȳ)dȳdx̄

∫ 1

x̂

∫ 1

−1
ū(x̄, ȳ)dȳdx̄

(10)

This notion is visualized in Figure S-1. In the case where the flow rates are known, the interface position

x̂, which varies between −1 and 1, must be determined by integrating ū inside of an iterative root finding

algorithm.

Manipulation of the position of the planar interface thus depends on manipulation of the flow rates of

the multiple streams. Flow rate can be related to the forcing pressure at the inlet of the microfluidic device

through the fluid resistance of the inlet and outlet channels, using Equation 9:

P1 = κ1L1Q1 + κ0L0(Qsum)

P2 = κ2L2Q2 + κ0L0(Qsum)

(11)

where Pk represents the forcing pressure at the kth inlet measured relative to the pressure at the outlet of

the microfluidic device (generally atmospheric pressure) and (κk, Lk) are the fluid resistance per unit length

and channel length of the different channels (0 represents the outlet). Rk is taken to represent the product

κkLk, the fluidic resistance of inlet k.

Equations 11 can be combined to describe the outlet channel flow rate Qsum:

Qsum =

∑

Pi/Ri

1 + R0

∑

1/Ri
(12)

This shows that the flow rate in the outlet channel can be held constant as long as
∑

Pi/Ri is held constant.

In the case where all inlets have equal fluidic resistance, the output flow rate is directly proportional to the

sum of the inlet pressures, even if the individual pressures vary.

The fractional flow through inlet k can be defined as θk = Qk/Qsum. Equation 12 leads to a statement

of θk as a function only of forcing pressures and device geometry:

θk =
Pk

Rk

(

1 + R0

∑

1/Ri
∑

Pi/Ri

)

−
R0

Rk
(13)

When the ratio θk becomes zero, flow through the kth inlet channel ceases. This corresponds to the forcing

pressure Pk equaling the pressure at the point of confluence. If Pk becomes lower than the confluence

pressure, then backflow up the kth inlet will occur, with the backflowing fluid originating from the adjacent

inlet streams.
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Equations 10–13 can be used to relate the interface position at confluence to macroscopic channel ge-

ometry and to inlet forcing pressures. For a fixed geometry, φ depends only on the pressures and manifests

no dynamic behavior. Thus the interface position near the confluence of the inlet streams at any instant

depends only on the pressures. According to this theory, interface position can be modulated as precisely

and quickly as the inlet pressures can be modulated. Practically, this approximation is valid as long as the

characteristic speeds of the system are much lower than the speed of sound in water, and the characteristic

time scales are much longer than the slowest mechanical time constants of the system, i.e. that the system

is quasi-steady-state.

Interface position in this discussion refers to the interface at a point immediately after the flow becomes

well-developed. Changes in the forcing pressures will manifest immediately at the point of confluence and

propagate downstream with a characteristic transport delay based on the fluid velocity. Under typical

conditions, this delay is on the order of 10-100 ms for a point 1-2 mm downstream.

3.3 Diffusion Across the Interface

The previous section explored the phenomenon of parallel laminar streams flowing adjacent to one another

in a microfluidic device. Although the streams must be identical in macrophysical characteristics in order

for the prior results to be meaningful, the streams could still differ in the presence and concentration of trace

solutes. In the case that two adjacent streams differ in chemical concentration, their juxtaposition in the

outlet channel will produce a sharp concentration gradient across the laminar interface that separates them.

Where there is a concentration gradient, there is diffusion. A complete discussion of diffusive transport can

be found in [5].

Diffusive transport of trace solutes is governed by Fick’s First Law:

JA = −D∇cA (14)

which states that the flux of a diffusing substance A is proportional to the concentration gradient of the

substance ∇cA, with the constant of proportionality being the diffusion coefficient D, and the direction of the

flux tending to reduce the gradient. If Equation 14 is combined with the equation of continuity in modeling

a differential fluid element, a general transport equation can be written that includes both advection and

diffusion:

∂cA

∂t
+ u · ∇cA = ∇ · (D∇cA) + RA (15)
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where RA represents the generation or depletion of substance A by chemical reaction.

Equation 15 can be used to model diffusion across the laminar interface in a microfluidic channel. Mi-

crofluid flows in this study can be assumed to be steady state with no velocity components normal to the

channel axis and no reaction. The diffusion coefficient can be taken as constant. In addition, under the

condition that convective transport downstream is much larger than diffusive transport, diffusion along the

axis of the channel can be neglected. The ratio of convective to diffusive transport is measured by the Péclet

number,

Pe =
Uh

D
(16)

and diffusion in the axial direction can be neglected when Pe ≫ 1, as is the case in this study.

The simplified form of the advection-diffusion equation can then be written:

u(x, y)
∂cA

∂z
= D

(

∂2cA

∂x2
+

∂2cA

∂y2

)

(17)

This formulation can also be nondimensionalized as an aid to analysis. As before, we take ū = 8µu/Gh2 to be

the peak velocity at the center of the channel. However, we now want x̄ and ȳ to be commensurable, because

diffusion is equiaxial, so we take x̄ = x/(h
2
) and ȳ = y/(h

2
). Because we are neglecting diffusion in the z

direction, we are free to nondimensionalize z against a characteristic downstream length to be determined

later, z̄ = z/z∗. Lastly, chemical concentration of the solute, cA, is assumed nondimensional, where cA = 1

corresponds to the maximal concentration present in the problem’s initial condition.

ū
∂cA

∂z̄
=

1

ν

(

∂2cA

∂x̄2
+

∂2cA

∂ȳ2

)

; ν = Pe ·
h

4z∗
(18)

We can now select our characteristic length, z∗, to be Pe · h/4 = Gh4/32µD, which renders the problem

parameter-free.

The Prototypical Case: One-Dimensional Diffusion

Under the assumptions of a uniform velocity field and solute distribution in the y direction, Equation 18

reduces to the one-dimensional Diffusion equation,

∂cA

∂z̄
=

∂2cA

∂x̄2
(19)
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whose solution, under the initial condition that cA|x̄<0 = 1 and cA|x̄>0 = 0, is [3]

cA =
1

2
(1 + erf(−η)) ; η =

x̄

2
· (z̄)−1/2 (20)

where erf(x) represents the Gauss Error Function.

Equation 20 accurately describes experimental results measuring diffusion in microchannels, and largely

governs the operation of diffusion-based microfluidic molecular sorters and sensors for which variations along

the channel’s vertical axis are not significant [6].

Two-Dimensional Effects

Because the velocity field in real microchannels is not uniform, Equation 20 is limited in its applicability.

The fluid velocity is close to zero near the channel walls, so diffusion is more significant and the diffusion

region can be expected to grow more quickly. Published results have suggested that near the walls of a

channel, the flow grows with the downstream distance as z̄1/3, which would represent a faster rate of growth

for z̄ < 1 [7].

An analytic evaluation of the problem is challenging, but there are two exemplary treatments in Salmon

and Adjari [8] and Jiménez [9]. Both take insight from a classic solution by Lévêque (1928; treated in

Schlichting [10]) for a problem of heat transfer from a fixed-temperature plate into a laminar film. The

solution relies on a change of variables ŷ = 1 − ȳ to place the origin against the channel wall, with the

assumption that the velocity is linear in ŷ in a small region near the wall. The transformed problem can

be nonparameterized with a pair of new similarity variables which vary with z̄−1/3. However, no analytic

solution is forthcoming, placing the problem of determining the transverse concentration profile in the domain

of numerical methods.

Modeling the Concentration Profile

Numerical models have been used to study the problem and have replicated the observed accelerated broad-

ening of the diffusion region near the walls [8, 9]. These models also find a 1/3-power broadening close

to the channel walls. Figure S-2 shows representations of the numerical solution for concentration distri-

bution in cross-sectional planes at distances of 0.01z∗ and 0.2z∗ from the confluence, as computed from a

finite-difference implementation of Equation 18.

In order to create a simple formulation of chemical concentration near the wall of the channel as a function

of lateral distance from the interface plane and distance downstream, we used the numerical model to extract



Kuczenski, Ruder, Messner & LeDuc — 2008 11

h
e
ig

h
t

z=0.01z
*

width

h
e
ig

h
t

z=0.2z
*

The concentration profile in a plane normal to the axis, in simulation.

Figure S-2: Modeling diffusion across the laminar interface.

contour curves of chemical concentration in a plane just above the bottom of the channel (ȳ → −1). We

defined the diffusion region δ as the distance from the interface beyond which the concentration was below

a threshold value, and made the supposition that δ grew with z̄1/3 for z̄ ≪ 1. We sought the values of f(cA)

for the formulation,

δ̄

2
= f(cA) · (z̄)1/3 (21)

where δ̄ = δ/(h
2
) and z̄ = z/z∗. For each of several threshold values r we computed contour curves from

the data for δ̄(r, z̄). We used the contours to determine the downstream distance that minimized the error

between δ̄ and αz̄1/3 for some optimal α. This distance was z̄ = 0.0414. We then determined the best-fit

value for α at each threshold value over the region z̄ ∈ [0, .0414]. The results are shown in Figure S-3a, and

are well-described by the function

α(r) = f(cA) ≈ −erf−1(2cA − 1) (22)
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(a) The similarity parameter δ̄/z̄1/3, representing growth of the diffusion region near the wall for threshold concentra-
tions from 0.01–0.99 (squares). The solid line shows a plausible formulation of diffusion region growth. (b) Comparison
of the simulated data (solid lines) and the analytic model in Equation 22 (dashed lines) for two different concentration
thresholds. The classical 1/2-power model is also shown (dotted lines).

Figure S-3: Numerical simulation of the growth of the diffusion region.

for threshold values below 0.5. For threshold values above 0.5 the best fit curve is

f(cA) ≈ −1.217 · erf−1(2cA − 1) (23)

The concentration profile within the plane as a function of δ̄ can then be found by inverting Equations 21–22.

cA =
1

2

(

1 + erf
(

−δ̄/2 · (z̄)−1/3
)

)

(24)

Equation 24 relates concentration of a dilute species initially present in one lane to the distance down-

stream z̄ and the lateral distance away from the interfacial plane, δ̄. Due to the negative sign in the argument,

positive values for δ̄ correspond to regions of lower-than-median concentration.

The 1/3-power assumption is fairly accurate over a large range of values for z̄. Figure S-3b shows

the comparison of the analytic model (dashed lines) with the simulation (solid lines) for two submedian

concentrations of 1% (thin, blue) and 35% (thick, black). The classical 1/2-power fit is also shown (dotted

lines). The 1/3-power approximation appears to be accurate up to z̄ ≈ 0.1, beyond which the slope of the

contour curves appears to gradually approach the 1/2-power approximation.
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3.4 Impingement of Cells on Fluid Flow

The above theory is developed for an ideal fluid channel with uniform rectangular cross-section. Because the

application involves cells adhered to the inside wall of the channel, it is important to consider the potential

effects of a cell’s impingement on fluid flow.

Although fluid flow around cells in microchannels has never been directly imaged, computational models

have been constructed to evaluate the shear force exerted on cells and the displacement of fluid flow by cells

[11–13]. Upon review, Walker et al. concluded that fluid flow is significantly affected by the presence of cells

if the ratio of cell height to channel height is greater than about 0.1 [14], though the shear force on cells is

always higher than the shear force predicted at the walls. Measurements of the three-dimensional geometry

of adherent fibroblasts using vertical scanning interferometry have found their maximal height to be in the

range of 1.5–2.5 microns, with the mean height over the cell area substantially less than that [15].

In the present application, that height corresponds to a maximal cell-height-to-channel-height ratio of

0.03–0.05. Thus, while the presence of cells on the channel surface could affect the velocity profile in the

neighborhood of the cells, those effects are unlikely to manifest significantly outside of the immediately

surrounding region, due to the cells’ low cross-section in comparison to the channel height.

Cells are also unlikely to affect downstream flow. Fluid flow in the present application is strongly laminar

(Re ≪ 10), and because cellular length scales are considered to be within the scope of classical fluid dynamics,

deformation of fluid flow can be thought of as smooth and stable (potential flow; see [3]). In a channel of

uniform cross section under such conditions, small perturbations are highly unlikely to induce downstream

turbulence or eddy currents which would cause mixing (cf. [16, 17]).

Further investigation may be called for to determine the extent of deformation induced by adherent cells.

However, existing research suggests that it is not significant to the present work.

4 Pressure Control

The following section is excerpted from [1].

The objective of this research was to control the chemical concentration in a region of fluid near a point

on the interior surface of a microfluidic device using the principles developed in Section 3. Because flow rate

depends strongly on forcing pressure, the strategy was chosen to perform closed-loop feedback regulation of

static pressure using two independent pressure regulators which would operate synchronously via a computer

interface.

Pressure sensor feedback is integral to this strategy. The biggest shortcoming of available displacement-
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driven flow control devices is the lack of a means to measure real flow rate. The theory developed in Section 3.2

indicates that the position of the interfacial plane in a microfluidic channel can be estimated based solely

on the measurement of forcing pressures, assuming the macro-scale characteristics of the device are known.

This implies that chemical concentration at a target region can be estimated regardless of the performance

of the pressure regulators. This condition also implies that conventional, open-loop displacement-driven

pumps can be used for the same purpose as the custom apparatus used in this investigation. However, the

performance of these systems may be inferior in precision or responsiveness to the device described here.

The design concept called for a means of regulating fluid pressure in a reservoir with high speed and pre-

cision. The design, motivated by existing displacement-driven syringe pumps, was to use a high-performance

DC motor to exert force on a syringe plunger in response to pressure readings from a sensor affixed down-

stream of the syringe mouth. The chassis was designed to minimize friction, backlash and other nonlinearities

as much as possible in order to improve performance. The electrical hardware was chosen to be simple and

easily manufacturable, using a small number of commonly-available components.

4.1 Mechanical Subsystem

Figure S-4 shows a number of photographs of the mechanical design. The syringe barrel itself is mounted in

a V-shaped channel via a cross-brace attached with thumbscrews. The channel is padded with adhesive foam

rubber to permit some flexibility and prevent binding. It was expected that a small amount of compliance

would permit the syringe and plunger to settle into a low-friction configuration easily. The syringe axis is

designed to be parallel to, and nearly collinear with, the motor axis.

The plunger carriage contains four press-fit brass bushings which slide on a pair of precision 1/4-inch

(6.35-mm) steel rods. The two main components of the carriage are the plunger grip, in the front, and the

lead-nut mount, in the rear. They are attached via a pair of thin threaded rods. This means of attachment

was designed to be tuned carefully during assembly to avoid binding.

The leadscrew and mating lead-nut were chosen for their minimal backlash and rotating friction. The

leadscrew is fastened to the motor shaft using a three-axis flexible coupling which was capable of absorbing

translational and angular shaft mis-alignment while still retaining rotational stiffness. The motor is mounted

to the chassis using flathead screws in countersunk holes, which provide maximal positioning precision.
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Figure S-4: Photographs of the experimental apparatus.
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4.2 Electrical Subsystem

Figure S-4d shows a photograph of the operating electronics for the device. The design goal was a “single-chip

solution” which used commonly available components and a single low-cost, multi-purpose processor to han-

dle all functions of the device. These include Analog-to-Digital conversion, user interface via hardware and

RS-232 communication, control signal computation, and compensator output via pulse-width modulation.

The PIC 18F series of microcontrollers from Microchip Technology Inc. was selected because of its multiple

integrated features and low cost. In addition to the processor, the electrical system includes an RS-232 level

converter, some analog circuitry, an L298 H-bridge amplifier and connecting logic. The device also required

peripheral hardware including the pressure sensor, LCD screen (Hitachi HD44780-based; 20x4 character

display), three pushbuttons, an optical quadrature encoder used as an input knob, and a three-output power

supply (+/ − 12 volts, +5 volts, and ground).

4.3 Control System Design

Figure S-5 documents the features of the control system. Inputs are the reference signal from the user and

the sensor reading from the 10-bit Analog to Digital (A/D) converter. The output is the 10-bit PWM signal

to the motor amplifier. The compensator is oblivious to sensor calibration and to real-world measurements.

Reference signals are translated into the units of A/D counts and compared directly to the input from the

sensor.

With the exception of the servo frequency, which can presently only be adjusted when the code is compiled,

all parameters can be adjusted during operation using the serial communication interface.

4.3.1 Reference Signal

The operator selects from three different reference sources: the internal reference, set from the hardware

interface; the reference signal from the serial port; or the analog signal coming in on the second A/D channel,

AD1.

The reference signal can be altered in two ways. First, the signal’s velocity can be limited parametrically

to between 4 and 1000 A/D counts per second, permitting step inputs from the operator to be interpreted

as continuous linear curves. Second, a parametric sine wave generator, implemented on the PIC, can add

a sinusoid to the reference. The sine wave generator has 8 bits of resolution and can produce signals with

amplitudes up to 1/4 the maximum reference (peak-to-peak) and periods of integer multiples of 800 ms, up

to 204.8 seconds.
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Figure S-5: Design features of the control system.

4.3.2 Feedback Signal

The feedback signal is always read from the first A/D converter channel, AD0. The data acquisition routine

subtracts a configurable zero-offset value from the A/D converter result upon receiving it. After zero adjust-

ment, the A/D result is passed through a tunable first-order low-pass infinite impulse response (IIR) filter

to reduce noise. The output of the filter is subsequently used as the sensor reading. The filter’s transfer

function is

Sensor[z]

ADResult0[z]
=

z · KIIR

256

z − (1 − KIIR

256
)

(25)

where KIIR is an integer from 0 to 255. For small values of KIIR, this is roughly equivalent to the continuous-

time filter G(s) = 1

τs+1
, where τ = −Ts/ ln(KIIR

256
).

The compensator can be configured to run in an open-loop configuration, where the feedback signal is

ignored and a signed reference signal is input directly to the compensator.

4.3.3 Linear Compensator

The control system includes a proportional-integral-derivative (PID) compensator with 32 bits of internal

numerical resolution. In order to address the dependence of PID gains on servo frequency, the servo frequency

can be set at compile-time to any power-of-two division of the 1-kHz sampling frequency.

The compensator also implements reference feedforward, which is a strategy for predicting the desirable
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motor output based only on the reference signal. Because feedforward computation does not depend on the

sensor reading, it does not affect the stability of the feedback loop. However, it can have substantial effects

on compensator performance. The feedforward term is equal to the reference signal multiplied by a constant

programmable gain.

The compensator’s internal accumulator retains 32 bits of resolution, but only the most significant 11

bits (10-bit PWM signal plus sign) are used in the output.

4.3.4 Diagnostics and Data Logging

The control software includes a data collection routine which can be used for experimental data as well as

device diagnostics. Data collection can be triggered by an internal timer, by an external voltage signal,

or via a command received over serial communication. When a trigger event occurs, the routine records

a data point. By default, one data point comprises the Reference signal, the Sensor feedback signal, and

a configurable third memory register which can log any operational variable. The current implementation

has a memory capacity of 768 bytes, or 128 data points of three 16-bit signals. The routine can also be

configured to log a single signal for up to 384 points. Data can then be extracted to a computer over the

serial port.

This facility enables verification of the control software as well as pressure data logging during an exper-

iment. For fluorescent microscopy, the device can be setup to trigger from the same signal used to open the

fluorescent excitation shutter.

5 Microfluidic Devices

The following section is excerpted from [1].

5.1 Microfluidic Device Design

The microfluidic devices were designed to be planar devices with piecewise uniform rectangular cross-section,

50 microns in height. The experiment chamber was designed to be 500 microns wide, affording a large aspect

ratio, and 10 mm in length. The operating point was selected to be around 150 kPa/m in the experiment

chamber, resulting in a fluid velocity of 47 mm/s, flow rate of about 45 µL per minute, and wall shear force

of 3.75 Pa. Under these conditions, the transport delay at the end of the experiment chamber is on the order

of 0.25 s and the width of the diffusion region there is around 22 microns.
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1mm

Figure S-6: The microfluidic device design used in cell stimulation experiments.

We chose a two-inlet design for the network in order to deliver one agonist and one neutral stream. The

resistance ratio Ri/Ro was chosen to be around 2.3 based on the pressure controllers’ ideal operable range

of roughly 15–50 kPa. The final channel design, shown in Figure S-6, had an estimated inlet resistance of

47.7 kPa/(µL/s) and outlet resistance of 22.4 kPa/(µL/s). Along the side of the experiment chamber is a

coded hash mark strip intended to facilitate easy measurement of longitude.

5.2 Microfluidic Device Manufacture

Microfluidic devices were manufactured according to the practices described in [18]. The designs were laid

out in LATEX and printed to a high-resolution (5080 dpi; 200 dots per mm) negative transparency mask

(PageWorks). The masks were used to UV-expose a 50-micron layer of SU8-50 photoresist, which was then

hardened, developed and rinsed.

PDMS was mixed with its curing agent in a 10:1 ratio by weight, poured over the wafer and then placed

in a vacuum chamber for 20–40 minutes to remove air bubbles. Next it was cured on a hot plate for 1 hour.

Molded polymer slabs were cut out with a scalpel. Inlet and outlet ports were punctured using a sharpened

flat-end 16-gauge hypodermic needle. The bonding surface was cleaned of lint with Scotch tape and the

slabs were placed face-up in an oxygen-plasma oven (Harrick Plasma, PDC-32G). 22×40 mm #1 coverslips

were cleaned and rinsed thoroughly, dried with compressed nitrogen, and placed in the plasma oven. The

polymer slabs and coverglasses were cleaned in plasma for 60–90s and then bonded together immediately.

Finally, they were stored in an oven at 70◦ C to enhance adhesion.
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5.3 Sensor Calibration and Device Precision

The results our previous work demonstrate that the theory presented in Section 3.2 accurately predicts the

relationship between static reservoir pressure and laminar interface position [19]. However, interface position

determined by Equation 13 depends on forcing pressures and fluid resistances, and so accurate positioning

of the interface requires accurate measurements of pressure and resistance. The initial calibration process

for the pressure sensors was limited in accuracy by the practical challenge of producing a water column of

appreciable height, combined with the problem of noise at the sensor input. The nominal resistance ratio

of the microfluidic devices depended on the devices’ physical dimensions and characteristics matching their

ideal design, when in fact the actual devices seemed to perform somewhat differently. The data processing

steps described in [19] aimed to extract accurate gain values for the pressure sensors and to determine the

effective resistance ratio, Ri/R0 of the channels.

In fact, the calibration values extracted from the data can be accurate only in ratio to one another,

since there was no measurement that ‘anchored’ the calibration values to an actual pressure, aside from the

initial calibration. Furthermore, the ratio of inlet to outlet resistances fails to account for the possibility of

differences in the fluidic resistance of the two inlets from each other. As a result, beyond a merely consistent

trend in sensor calibration values and outlet resistance corrections, it was unclear at the conclusion of the

above study whether the data processing steps described would permit an experimenter to predict interface

position on a freshly-manufactured, uncalibrated microfluidic device.

To answer the question of whether static pressure measurement could consistently predict interface po-

sition without requiring a calibration step for every channel, we tested a collection of nominally identical

microfluidic devices (n = 12) that were in fact manufactured from a variety of distinct molds on two separate

wafers. For each device we repeated the analysis described in [19], using the same sensors for all tests and

obtaining best-fit values for sensor calibration and effective outlet resistance. We then took the average

sensor gain values and effective outlet resistance from the first five tests, and applied them uniformly to

the data in all twelve tests. We measured the variance between the interface positions observed and those

predicted using the uniform calibration.

The results are shown in Figure S-7. Molds A1–A5 were all on a single wafer, and the data set includes two

tests on each. Molds B1–B2 were on a separate wafer and have one test each. The average of the variance,

across all tests, is 0.036 dimensionless latitude units, indicated by the dashed line in Figure S-7. This

corresponds to ±1.8% of the channel width, or roughly ±9 microns. The data suggest that the magnitude

of the error may be correlated with the specific mold used, and that better characterizing each mold may
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Figure S-7: Mean error in interface position under uniform calibration.

provide improved precision.

Sources of Error

The above procedure makes use of two calibration processes which each manifest a separate source of error.

Assuming the pressure sensors themselves maintain a consistent calibration, the sensor calibration step

adjusts for discrepancies between the nominally equi-resistive inlets. These discrepancies could be caused

by manufacturing defects in the channels or in the particular microfluidic device under test, and may also

represent calibration drift of the sensors.

The “effective outlet” step adjusts the slope of the data on the Π − x curve by accounting for defects

in outlet resistance or in the ratio of mean inlet to outlet resistance. In every recorded test, the effective

outlet resistance was larger than the nominal value, suggesting that a systematic error in analysis results

in an artifically low predicted value for outlet resistance. A possible explanation is that inlet channels,

which are maintained at higher pressures during operation, deform under pressure from the fluid, resulting
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in lower inlet resistances and an apparently higher effective outlet resistance. However, it is unlikely that

this accounts for the full extent of the observed change, on the order of a 15–25% increase in effective outlet

length, and as yet unidentified factors may affect fluid flow. Fortunately, the effective outlet length seems to

be consistent across devices for a given design.

Error could be reduced, and positioning accuracy improved, by using more carefully manufactured chan-

nels. Soft lithography with low-melting-point polymers is convenient and quick, but may lack the precision

required for high-accuracy applications. In the case where tighter accuracy is required, machined microfluidic

devices, or devices manufactured out of a hard material or using hard photolithographic techniques, may

provide improved performance.1

1See [20] for a review of manufacturing techniques for microfluidic devices.
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