Supplementary Material for Michel & Bren, "Submolecular Unfolding Units in *Pseudomonas aeruginosa* Cytochrome c_{551} "

	[GuHCl]:	0 M	0.2 M	0.4 M	0.6 M	0.8 M	1.0 M	1.2 M	1.4 M
3	Pro								
4	Glu	17.6	5.4						
5	Val								
6	Leu								
7	Phe	13.9	9.6			15.4		15.0	
8	Lys	16.4	18.3						
9	Asn								
10	Lys	19.5	16.5	18.3	18.5				
11	Gly								
12	Cys								
13	Val	16.0	16.9	17.2	16.0	15.2	16.8	17.4	14.2
14	Ala	15.3	16.2	18.3	16.4	17.1	16.1	17.3	15.2
15	Cys	25.4	25.0	24.9	24.5	24.3	22.8	22.1	19.9
16	His	33.7	31.8	32.7	30.6	28.7	26.1	22.0	20.3
17	Ala	26.0	24.4	23.2	22.1	21.6	19.8	19.3	
18	Ile								
19	Asp								
20	Thr								
21	Lys								
22	Met								
23	Val								
24	Gly	23.8	22.6	21.5	20.5	19.5	18.5	16.4	15.8
25	Pro								
26	Ala	17.3	17.0	17.4	14.9	15.1	15.5	17.0	
27	Tyr	15.4	20.2	16.1	15.9	18.4	19.6	18.4	
28	Lys	17.6	18.0	17.7	17.1	17.0	16.9	18.5	
29	Asp	21.3	18.8	18.1	16.6	15.5	14.8	12.4	
30	Val	22.4	18.7	17.6	16.1	15.0	14.0	12.0	10.1
31	Ala	24.6	22.3	20.5	18.3	17.4	16.5	15.5	14.9
32	Ala	23.7	22.8	20.1	19.2	18.4	17.1	15.2	15.7
33	Lys	22.5	20.9	19.8	18.1	18.2	16.0	15.9	18.3
34	Phe	21.0	19.2	18.5	16.8	16.8	17.1	15.7	
35	Ala	16.7	16.3						
36	Gly								
37	Gln	19.8	23.0	21.6		18.7	19.0	19.8	18.8
38	Ala								
39	Gly								
40	Ala	16.8	12.0						

Table S1 ΔG_{HX} values (kJ/mol) for residues in *Pa* cyt c_{551} in the presence of GuHCl. Blank boxes represent prolines or residues which exchanged too quickly to measure an exchange rate.

	[GuHCl]:	0 M	0.2 M	0.4 M	0.6 M	0.8 M	1.0 M	1.2 M	1.4 M
41	Glu								
42	Ala	15.3	12.8	13.9	14.5	13.2	18.0	15.9	17.1
43	Glu								
44	Leu	20.7	19.5	18.9	18.0	17.2	15.4	12.9	11.0
45	Ala	22.6	21.8	23.8	23.8	21.0	18.3	15.6	13.2
46	Gln	23.0	22.4	22.1	21.2	20.8	18.7	16.5	15.2
47	Arg	30.4	28.4	27.6	25.6	23.1	19.4	17.5	
48	Ile	34.2	28.8	27.3	23.2	21.5	18.6	14.8	12.2
49	Lys	31.9	29.0	27.2	23.3	21.5	16.9	16.6	13.4
50	Asn	30.8	28.3	26.7	24.1	22.4	20.0	18.1	
51	Gly	33.9	30.3	28.3	24.9	22.4	20.9	17.1	
52	Ser	33.4	30.0	27.8	25.4	22.3	19.4	18.1	
53	Gln								
54	Gly	16.9	15.3	20.1	18.1				
55	Val	15.8	15.9	15.9	13.5	15.1	13.2	14.3	12.2
56	Тгр	20.5	19.5	18.8	18.9	17.5	15.7	16.1	11.6
57	Gly	19.4	19.4	18.3	18.1	17.5	18.1	17.7	16.4
58	Pro								
59	Ile	11.3	8.7	11.9	10.8	8.2	10.7	10.6	10.4
60	Pro								
61	Met	28.6	25.2	24.8	23.4	22.1	19.3	17.1	14.1
62	Pro								
63	Pro								
64	Asn	24.2	20.7	20.4	19.5	19.7	19.1	20.3	18.7
65	Ala								
66	Val	14.3	14.4	14.3	13.0	13.1	12.2	13.9	11.6
67	Ser	20.5	20.8	20.8	19.1	18.7	18.6	19.5	20.1
68	Asp								
69	Asp								
70	Glu	13.2	10.0	15.5	14.4	15.4			
71	Ala	26.6	26.2	26.6	23.8	21.6	19.5	17.7	13.7
72	Gln	27.4	25.8	25.5	23.6	22.0	18.9	16.9	16.5
73	Thr	23.8	24.5	24.0	22.9	20.6	18.5	18.9	
74	Leu	33.5	28.5	25.0	22.2	20.9	16.4	14.4	12.4
75	Ala	35.3	28.9	28.6	22.7	21.1	18.5	15.5	14.3
76	Lys	35.0	29.9	29.2	25.2	22.8	19.1	16.7	14.0
77	Trp	32.3	30.0	28.6	24.2	22.0	17.7	16.0	12.3
78	Val	32.7	26.4	24.5	21.3	20.4	16.9	14.0	11.2
79	Leu	32.1	27.6	26.0	21.3	20.3	16.3	15.0	10.8
80	Ser	28.6	27.6	26.1	24.0	21.3	18.8	18.7	
81	Gln								
82	Lys								

Table S2 To confirm the HX experiments in GuHCl were within the EX2 limit, the observed exchange rates for *Pa* cyt c_{551} in 1.4 M GuHCl at pH 5 and 1.4 M GuHCl at pH 6 were compared. The log(k_{obs}) values are ~10 fold higher at pH 5 compared to the values at pH 6, as expected for a protein exchanging within the EX2 limit.

Residue	AA	log(k _{obs}) pH 5	log(k _{obs}) pH 6
13	Val	-3.9	-2.9
14	Ala	-3.8	-3.0
24	Gly	-3.6	-2.8
30	Val	-3.9	-2.8
31	Ala	-3.5	-2.9
44	Leu	-3.9	-2.8
45	Ala	-3.8	-2.7
46	Gln	-3.7	-2.8
48	Ile	-3.9	-2.8
49	Lys	-3.4	-2.8
55	Val	-3.5	-2.8
56	Trp	-3.8	-2.7
57	Gly	-3.6	-2.9
59	Ile	-3.8	-3.0
61	Met	-3.9	-2.9
66	Val	-3.6	-2.9
71	Ala	-3.7	-2.7
72	Gln	-3.8	-3.0
74	Leu	-3.7	-2.7
75	Ala	-3.8	-2.9
76	Lys	-3.8	-2.7
77	Trp	-3.8	-2.6
78	Val	-4.1	-2.9
79	Leu	-3.9	-2.8

Fig. S1 GuHCl denaturation curve monitored by circular dichroism spectroscopy for oxidized *Pa*-cyt *c*. The fit shown is to a two-state model, using the equation:

 $y = [(y_f + m_f[GuHCl]) + (y_u + m_u[GuHCl])(e^{-\{(\Delta G(H_2O) - m[GuHCl])/RT\}})]/(1 + e^{-\{(\Delta G(H_2O) - m[GuHCl])/RT\}})$ where "y" refers to the measured CD signal, and subscripts "u" and "f" refer to the unfolded and folded states (denatured and native conditions, respectively), and $\Delta G(H_2O)$ is the free energy of unfolding in the absence of denaturant.

The fitted parameters are: $y_f = -10.8 \pm 0.37 \text{ mdeg}$; $y_u = -3.13 \pm 1.48 \text{ mdeg}$; $m_f = -0.02 \pm 0.47 \text{ J/mol}$ M; $m_u = -0.16 \pm 0.40 \text{ J/mol}$ M: $\Delta G(H_2O) = 25 \pm 6 \text{ kJ/mol}$; $m = 13 \pm 3 \text{ kJ/mol}$ M.

The concentrations of GuHCl used in this study, 0 to 1.4 M, correspond to 100 to 95% folded protein according to these data.

Fig. S2 Hydrogen bonds with loop 3 residues, determined from crystal structures of *Pa* cyt c_{551} (351C; left) and horse cyt *c* (1HRC; right). Filled circles represent residues with loop 3, and open circles non-loop 3 residues. Prolines are indicated with a box, and the heme axial Met with a gray circle. The geometric parameters used to determine the presence of a hydrogen bond are: r(D-A) < 3.5 and θ (D-H-A) > 150° where D and A are the heavy-atom hydrogen bond donor and acceptor.