
Supporting Information

Supplementary materials and methods

Additional information on bioinformatic analysis of small RNA sequences.

The initial parsing of raw small RNA sequence tags using the Python script

“CLASSIFY”. To identify the high quality small RNA reads from the raw sequencing

data file provided by Illumina, we created a Python script named “CLASSIFY” (see

below) to extract the small RNAs sequences with both identifiable 5’ and 3’ adapter

sequences. Sequences tags with a non-matching 5’- or 3’-adapter, with adaptor self-

ligation, or with a GFP size marker-specific sequences were removed from further

analysis (Fig. 1B). The resulting small RNA tags were then sorted into the four “source

libraries” based on the 2-nt sequence index in the 5’-adaptor (Fig. 1B). Small RNAs that

are shorter than 18-nt or longer than 25-nt were discarded from each of the four libraries

(Fig. 1B).

Sorting of small RNAs of viral and host origin. For each of the four source libraries,

small RNAs with a sequence perfectly matching the TMV-Cg genome in either sense or

antisense orientation were identified and sorted into a separated bin designated as TMV-

Cg-derived small RNAs (Fig. 1C). This was done using the Python script “MAP” (see

below). Similarly, small RNAs with a sequence perfectly matching the Arabidopsis

thaliana nuclear and organellar genomes (version TAIR 8), respectively, were extracted

sequentially into distinct bins using the “MAP” algorithm. Of note, from the pool of 18-

~25-nt small RNAs, the number of small RNAs matching the nuclear genome were

788,710 (76.9%; Col-0 mock), 628,627 (71.53%, Col-0 TMV-Cg), 616,147(73.9%, rdr1-

1 TMV-Cg), and 575,365 (70.38%, rdr6-15 TMV-Cg), respectively. Those matching the

 1

organellar genomes were 44,472 (4.3%; Col-0 mock), 30,164 (3.4%, Col-0 TMV-Cg),

44,819 (5.4%, rdr1-1 TMV-Cg), and 38,281 (4.7%, rdr6-15 TMV-Cg), respectively.

Small RNAs that match neither the host nor viral genomic sequence were designated as

trash and discarded from further analysis. Of note, the number of small RNAs sorted into

the trash bin were 192,129 (18.7%; Col-0 mock), 119,166 (13.5%, Col-0 TMV-Cg),

159,251(19.1%, rdr1-1 TMV-Cg), and 141,735 (17.3%, rdr6-15 TMV-Cg), respectively.

Computational generation of TMV-Cg-derived of 21-nt siRNAs. The TMV-Cg-derived

21-nt siRNAs were generated in silico using the Python script “CUT” (see below). The

algorithm generates a total of 12,566 TMV-Cg-derived sense and antisense 21-nt small

RNAs from the 6,303-nt genome in all possible phases.

 A pseudocode, as well as the actual source code for each of the three Python scripts

used in this study is provided below.

Small RNA blot. Small RNA blot assays were done as described previously (Xie et al.,

2005). [32P]-end labeled DNA oligonucleotides were used as probes. The probe

sequences for each of the TMV-Cg-derived siRNAs were listed below:

5’- ATGAGTTCGGTGCTGCATTGC -3’ for TMV-Cg-siR696(-);

5’-GCAATGCAGCACCGAACTCAT-3’ for TMV-Cg-siR696(+);

and 5’-TCCAGCTTCAATCCTTAAATT-3’ for TMV-Cg-siR5293(+).

Experimental validation of host targets for viral siRNAs. Validation of target cleavage

by RLM-5’RACE was done as described previously (Llave et al., 2002). Sequences of

the gene-specific primers used in 5’RACE are listed below:

 2

(1) At4g36150_3746R: 5’-CTGTGGGATGATTTGAATAGCCATT-3’ and

At4g36150_3646R: 5’-ACCCGTTGGAAGAATTTTAGCTAACT-3’ for At4g36150;

(2) At1g22870_2866R: 5’-GCACAGAGGCTCTATGATAAATCACA-3’ and

At1g22870_2859R:5’-GCTCTATGATAAATCACAGACGAGAT-3’ for At1g22870;

(3) At2g01390_512R: 5’-CCGGAGCTTGAAACCCAGTGAATCA-3’ and

At2g01390_412R: 5’-TCCGACCGGCTTCTCCGAAGATAT-3’ for At2g01390;

(4) At3g10390_658R: 5’-CGGGTCGTTTCCTACCCTCCAAA-3’ and

At3g10390_603R: 5’-CCTAGCTGCAGCCAACCCAGATA-3’ for At3g10390;

(5) At3g61960_1772R: 5’-CCCGCGGTCTATTTTCGCTAAAGA-3’ and

At3g61960_1743R: 5’-CCGACGATGCTGTAAGTTAGAGAT-3’ for At3g61960;

 (6) AT5G51070_2961R: 5’-ACCTCACGGACTAATCACTATGTAT-3’ and

AT5G51070_2784R: 5’-CCGAACCGATGGGTTTCCGGTAT-3’ for At5g51070;

(7) At1g43850_1390R: 5’- GCTCTTCATGCCGCCGAGCACAA-3’ and

At1g43850_1260R:5’- CTCCAGGACAATTTGGCCAGATGAA-3’ for At1g43850;

(8) At5g64550_1947R: 5’- AGCCTTGTTGTTACCACATAGAGA-3’ and

At5g64550_1861R: 5’-GCCCGCCACCATGAACTCTTTCCT-3’ for At5g64550;

(9) At3g54090_654R: 5’- CGCCATCATTTTCCCGTCCTTAAACT-3’ and

At3g54090_578R: 5’- GCTCTCGTCTGAACTCTCTCCTGATT-3’ for At3g54090;

(10) At1g67710_1664R: 5’- GGAAGGTTCTTGGGAAAGCAAGATTA-3’ and

At1g67710_1522R: 5’- CAGGGTCAGGCAGCCGCTCATTT-3’ for At1g67710;

(11) At3g05340_580R: 5’- TCCCCACGGAAATTTCCTTGTCATAA-3’ and

At3g05340_457R: 5’- ACCCACCTGACCCAAGCATTCGTT-3’ for At3g05340;

 3

(12) At4g34910_1089R: 5’- CTGGCTATTATCATCCGTTGCAATCA-3’ and

At4g34910_815R: 5’- GGGACGGCCTCTTCCTTGTCATTAT-3’ for At4g34910;

(13) At4g36810_501R: 5’- ACGGCGGAGATCGTCGTTATCCATA-3’ and

At4g36810_408R: 5’- GGTTGATTCTTCACCTCCGACGAGTT-3’ for At4g36810, and

(14) At3g57880_1974R: 5’- TAGCTCGTCGGGGTGGGCTGAGT-3’ and

At3g57880_1911R: 5’- CGGTCTCCAACGGTAGTACCAGATA-3’ for At3g57880.

References

Llave, C., Xie, Z., Kasschau, K.D. and Carrington, J.C. (2002) Cleavage of Scarecrow-

like mRNA targets directed by a class of Arabidopsis miRNA. Science, 297,

2053-2056.

Xie, Z., Allen, E., Wilken, A. and Carrington, J.C. (2005) DICER-LIKE 4 functions in

trans-acting small interfering RNA biogenesis and vegetative phase change in

Arabidopsis thaliana. Proc Natl Acad Sci U S A, 102, 12984-12989.

 4

“CLASSIFY”
The input file is the sequencing result file in text (ASCII) format. The first column is the reads and the second column is

the sequence. Below is a segment of an example input file:

98053 ACTTGTGGCCGAGGATGTTTCCGTCCTCGTATG
78904 TGTTTGGATTGAAGGGAGCTCTATCGTATGCCG
53996 CATTTGGATTGAAGGGAGCTCTATCGTATGCCG

Pseudocode for CLASSIFY:

Input: Sequencing result file
Result: Parse all sequences in the sequencing result file and output parsing results into output files
Output: Output files and statistics on the screen
sum0← 0 (reads of useful sequences);1

sum1← 0 (reads of sequences without 5’ adapter match);2

sum2← 0 (reads of sequences without 3’ adapter match);3

sum3← 0 (reads of sequences with self-ligated sequences);4

sum4← 0 (reads of GFP);5

Create and open output files used to store parsing result6

while not at end of the input file do7

Read in one new line from the input file. Denoted the sequence as seq and the read of the sequence as seq-reads8

if The first 2 bases of seq is ’AC’, ’CA’, ’GT’ or ’TG’ then9

seq← seq without the first two bases.10

if The last i bases of seq are the same as the first i bases of 3’ adapter then11

seq← seq without the last i bases12

else13

sum2← sum2 + seq-reads14

Jump to step 815

end16

if The last i bases of seq are the same as the first i bases of 3’ adapter then17

sum3← sum3 + seq-reads (self-aliasing 3’ adapter has been found)18

Jump to step 819

else if The last j bases of seq are the same as the first j bases of gfp18 OR gfp24 then20

sum4← sum4 + seq-reads21

else22

Output seq to corresponding output file23

end24

else25

sum1← sum1 + seq-reads26

Jump to step 827

end28

end29

print sum0, sum1, sum2, sum3, sum430

Close output files31

1

Source code for CLASSIFY:

#This software is a free software licensed under GNU General Public License version 3 or later.

Cite this program as: Xiaopeng Qi, Forrest Sheng Bao and Zhixin Xie,
Small RNA Deep Sequencing Reveals Role for Arabidopsis thaliana RNA-dependent
RNA Polymerases in Viral siRNA Biogenesis, PLoS One, xxx: xxx, 2009

#usage: python classify.py <pool>
#no shell program embedding it

import string,os
from os.path import *
from numpy import *
from pylab import *

def classification(samples):
#samples
#[0]: segments
#[1]: reads
#[2]: class
trim5, trim3, result = [],[],[]

if samples[1][:2]=='AC':
trim5=[samples[1][2:], int(samples[0]), 1]

elif samples[1][:2]=='CA':
trim5=[samples[1][2:], int(samples[0]), 2]

elif samples[1][:2]=='GT':
trim5=[samples[1][2:], int(samples[0]), 3]

elif samples[1][:2]=='TG':
trim5=[samples[1][2:], int(samples[0]), 4]

else:
return -1; # no 5' adaptor

tail = "TCGTATGCCGTCTTCTGCTTG";

windowL = 3; # initial slide window length
windowU = len(tail); # slide window length to determine dumping a seq to trash3

subject = trim5[0];
should = 0 ;
for j in xrange(windowL,windowU+1):#begin sliding from $windowL, don't exceed $windowU

if subject[-j:] == tail[:j]:
trim3=[subject[:-j],trim5[1],trim5[2]];
should = 1;
if len(subject) > 34:

print subject,len(subject)
break;

if should ==1:
print "if not break, let me know";

if should == 0:
return -2; #no 3' adapter

match = 'TCGTATGCCGTCTTCTGCTTGTT';
gfp18 = 'CATCCTATACGGCCACAA';
gfp24 = 'TTGTGGCCGAGGATGTTTCCGTCC';

if match.find(trim3[0])==-1 and gfp18.find(trim3[0])==-1 and gfp24.find(trim3[0])==-1:
return trim3;

elif match.find(trim3[0])>=0:

2

return -3; # self-ligation
elif gfp18.find(trim3[0])>=0 or gfp24.find(trim3[0])>=0:

return -4; # GFP
else:

print match.find(trim3[i][0]);

return 0; # no meaningful result

sum0,sum1,sum2,sum3,sum4 = 0,0,0,0,0

out = [];
for i in xrange(0,4):

out.append([])
for j in xrange(15,29):

storefile = "./classified/s_6-A"+str(i)+"-"+str(j)+".txt"
if (exists(storefile)):

os.remove(storefile)
out[i].append(open(storefile,'a'))

f1=open(sys.argv[1],'r')
samples=[]
totalseq = 0;
while True:

line = f1.readline()
if len(line) == 0:

break #EOF
totalseq+=1;
result = classification(line.split())
if result==-1:

sum1+=int(line.split()[0])
elif result==-2:

sum2+=int(line.split()[0])
elif result==-3:

sum3+=int(line.split()[0])
elif result==-4:

sum4+=int(line.split()[0])
elif result==0:

break;
else:

sum0+=int(line.split()[0])
Ax=result[2]-1
if len(result[0])<16:

box = 15-15
else:

box = len(result[0])-15
out[Ax][box].write(result[0]+'\t'+str(result[1])+'\t'+str(result[2])+'\n')

print "reads of useful sequences",sum0, double(sum0)*100/(sum0+sum1+sum2+sum3+sum4),"%";
print "reads of sequences without 5' adapter match:",sum1,\
double(sum1)*100/(sum0+sum1+sum2+sum3+sum4),"%";

print "reads of sequences without 3' adapter match:",sum2,\
double(sum2)*100/(sum0+sum1+sum2+sum3+sum4),"%";

print "reads of sequences self-aliasing 3' adapter:",sum3,\
double(sum3)*100/(sum0+sum1+sum2+sum3+sum4),"%";

print "reads of GFP",sum4, double(sum4)*100/(sum0+sum1+sum2+sum3+sum4),"%";
print "reads of sequences:", sum0+sum1+sum2+sum3+sum4;

for i in xrange(0,3):
for j in xrange(15,29):

out[i][j-15].close()

3

“MAP”
The input file is the parsing result file in text (ASCII) format. The first column is the sequence. The second column is the

reads. The last column is small RNA library Id. Below is a segment of an example input file:

TTTGGATTGAAGGGAGCTCTA 53996 2
TTTGGATTGAAGGGAGCTCTT 10708 2
TCGGACCAGGCTTCATTCCCC 7441 2

Pseudocode for MAP:

Input: A parsing result file and a genome file in FASTA format
Result: Find siRNAs in the genome with perfect match and return their locations
Output: One output file recording searching results and two additional files for plotting
Create and open output files.1

Load the genome sequence into the memory.2

while not at end of the parsing result file do3

Read in one new line from the parsing result file. Denoted the sequence as seq and the read of the sequence as4

seq-reads
if 18 <length(seq)< 25 then5

find all occurence of seq on the genome6

output all occurence to the file recording searching results7

Repeat steps 6 and 7 to the complementary strand of the genome8

Output data for visualizing those occurences9

end10

Close all files11

1

source code for MAP:

#This software is a free software licensed under GNU General Public License version 3 or later.

Cite this program as: Xiaopeng Qi, Forrest Sheng Bao and Zhixin Xie,
Small RNA Deep Sequencing Reveals Role for Arabidopsis thaliana RNA-dependent
RNA Polymerases in Viral siRNA Biogenesis, PLoS One, xxx: xxx, 2009

run it in "classified" folder ; python ../map.py s_6_tag-A3.txt ../tmvcg

import string,os
from os.path import *
from numpy import *
from pylab import *
import cPickle

def fastaread(filename):
print "Begin Read"

seq0 = [];
for line in filename.readlines():

seq0.append(line.split());
seq0 = seq0[1:];

seq='';
for i in xrange(0,len(seq0)):

seq = seq + seq0[i][0];
del seq0

print "Read done"
return seq;

#f1=open("./results/"+sys.argv[1], 'r')
f1=open(sys.argv[1], 'r')
pool=[]
totalseq = 0;
for line in f1.readlines():

pool.append(line.split());
f1.close()
#print pool
for i in xrange(0,len(pool)):

pool[i][1] = int(pool[i][1])
pool[i].append([])

genomename = sys.argv[2]
f2=open(genomename,'r')
genome = fastaread(f2)
f2.close()
genome = genome.upper();

#print pool
#print genome

#samples
#[0]: segments
#[1]: reads
#[2]: class
#[3]: position on mapped genome [location, S/AS]
#[4]: section # in 9 sections, from 0 to 8

this function is changed in the new version
def addone(target, position, reads,direction):

2

if target.get(position-1, 0) == 0:#padzero
target[position-1] = 0

if target.get(position+1, 0) == 0:#padzero
target[position+1] = 0

target[position]=reads*direction
target[position] = target.get(position, 0) + reads*direction

end

def comp(genome):
compi = {'A':'T', 'T': 'A', 'G':'C', 'C': 'G'}
genomecom = list(genome)
for i in xrange(0,len(genome)):

genomecom[i] = compi.get(genome[i], '?')
return ''.join(genomecom)
""" find a gen in pool in genome via direction"""

def plotcount(genome,pool,direction):
genomeplot = {}
for i in xrange(0,len(pool)):

print "seq",i,"/",len(pool),"->",direction,sys.argv[1]
segment = pool[i][0];
if len(segment)>=18 and len(segment)<=25: # control the segment length

delimiter = 0;
while delimiter != -1:

if direction ==1:
location = genome.find(segment, delimiter, len(genome));
####just once, we need to consider all conditions.

elif direction == -1:
location = genome.find(segment[::-1], delimiter, len(genome));
####just once, we need to consider

if location >= 0:
addone(genomeplot, location, pool[i][1], direction)
no need to zero pad if using stem plot
if genomeplot.get(location-1, 0) == 0:#padzero
genomeplot[location-1] = 0
if genomeplot.get(location+1, 0) == 0:#padzero
genomeplot[location+1] = 0
end of zero pad

genomeplot[location] = genomeplot.get(location, 0)\
+ pool[i][1]*direction

pool[i][3].append([location,direction])
delimiter = location + len(pool[i][0]);

elif location == -1: # can't find, then give up
delimiter = -1

else:
print "error"

return genomeplot;

genomeplot = plotcount(genome,pool,1)
genomecomp = comp(genome)
genomecompplot = plotcount(genomecomp,pool,-1)

Aplotfilename = "../plotdata/"+sys.argv[2][3:]+sys.argv[1][:-4] + '.A.txt'
if (exists(Aplotfilename)):

os.remove(Aplotfilename)
Aplotfile = open(Aplotfilename,'a')
cPickle.dump(genomeplot, Aplotfile)

ASplotfilename = "../plotdata/"+sys.argv[2][3:]+sys.argv[1][:-4] + '.AS.txt'

3

if (exists(ASplotfilename)):
os.remove(ASplotfilename)

ASplotfile = open(ASplotfilename,'a')
cPickle.dump(genomecompplot, ASplotfile)

storefile = "../mapped/"+sys.argv[2][3:]+'.'+sys.argv[1]
if (exists(storefile)):

os.remove(storefile)
out = open(storefile,'a')

#dump file written format
#[0]: segments
#[1]: reads
#[4,5]: position on mapped genome [location, S/AS] !!!written at last

OutputThreshold = 0 # output sequences of reads higher than OutputThreshold

for i in xrange(0,len(pool)):
written = '';
if pool[i][3]!=[] and pool[i][1]>OutputThreshold:

written += pool[i][0] + "\t" + str(pool[i][1]) + "\t"
for j in xrange(0,len(pool[i][3])):

write 1) segments, 2) reads 5) location on genome 6) sense or antisense $repeat 5 6$
written += str(pool[i][3][j][0]) + "\t" + str(pool[i][3][j][1]) + "\t"

written += '\n'
out.write(written)

4

“CUT”
The input file is a FASTA format file of TMV-Cg genome.
pseudocode for CUT:

Input: A FASTA file
Result: Generate 21-nt small RNAs from TMV genome
Output: Another FASTA file
Create and open output file.1

Load the TMV genome sequence into the memory.2

for i = 1 to (length of TMV genome - 21) do3

seq← bases on the genome from the i-th base to the (i + 20)-th base4

Append seq and its FASTA header into output file5

end6

Close all files7

1

source code for CUT:

#This software is a free software licensed under GNU General Public License version 3 or later.

Cite this program as: Xiaopeng Qi, Forrest Sheng Bao and Zhixin Xie,
Small RNA Deep Sequencing Reveals Role for Arabidopsis thaliana RNA-dependent
RNA Polymerases in Viral siRNA Biogenesis, PLoS One, xxx: xxx, 2009

import sys,string
from numpy import *

def fastaread(filename):# this fastaread() is different from the one in miRNAclassify.py
seq0 = '';
for line in filename.readlines():

if line[0]!= '>':
st = line.split()
st = st[0].upper()
seq0+=st;

return seq0;

#read the first sequence
f1=open(sys.argv[1], 'r')
tmvpool = fastaread(f1)
#seq1=f1.readline()
#seq1=string.strip(seq1)

for i in xrange(0,len(tmvpool)-21):
print '>',i,'| Random ';
print tmvpool[i:i+21];

2

	XiePDF.pdf
	classify_Final_01.pdf
	map_Final_02.pdf
	cut_Final_03.pdf

