ACCEPTED MANUSCRIPT

1	associated calsequestrin layers as defined in (c). The views in (a),(b),(c), and (e) are
2	looking up from the SR lumen. Scale bars equal 10 nm.

3

4	Figure 5. Secondary density maxima in RyR class averages and possible tethers from the
5	SR membrane to calsequestrin and TT membrane. (a) Secondary maxima in the plane of
6	the SR membrane in the Class N average. Membrane-spanning domain of the RyR
7	template is rendered in yellow. (b) Transverse slice through the Class N average (at
8	dashed line in (a)) showing faint density (white arrows) connecting an SR density (black
9	arrow) to calsequestrin (black arrowhead). (c) Cytoplasmic densities in average of the
10	subset of Class S with TT membranes nearby. (d) Transverse slice through the TT
11	subaverage of Class S (at dashed line in (c)) showing faint density (white arrows)
12	connecting the cytoplasmic density (black arrows) to the TT membrane. The planes
13	shown in (a) and (c) correspond to orthogonal slices in the direction of the black arrows
14	in (b) and (d). Scale bars equal 10 nm.
15	
16	Figure 6. Partial model for the triad junction "couplon" based on cryo-electron
17	tomography. Top: View from above the SR membrane (light blue) showing RyR
18	(yellow), calsequestrin (dark blue), secondary SR membrane densities (green), and
19	cytoplasmic TT-associated densities (pink). Bottom: Side view of the couplon model
20	showing expected location of the TT membrane (black) and tethers (dashed lines)
21	inferred from the class averages in Figure 5.
22	
23	Supplemental Figure 1. Location of the region within the subvolumes used for

24 multivariate statistical analysis (a,b) and the orientations of identified RyRs (c) and

ACCEPTED MANUSCRIPT

1	quadrant subvolumes (d) relative to the electron beam. (a,b) Central slice of the global
2	average with surface rendering of a modified (yellow) and unmodified (blue mesh)
3	single-particle RyR superimposed. The RyR has been modified for underfocus and a
4	missing wedge directed about 15° counter clockwise from the vertical. White dashed
5	boxes delineate the subvolume region that was used for classification. (c,d) Polar plots
6	showing the distribution of RyRs (c) and quadrants (d) as a function of the Euler angles
7	defined in Methods. In (c) (radial direction) and (rotational direction) are plotted for
8	the 49 RyRs. In (d) (radial direction) and ψ (rotational direction) are plotted for each
9	pseudo-monomer. In (c) the tilt-axis direction is vertical ($=\pm90^{\circ}$). In (d) the beam
10	direction is vertical ($\psi = \pm 90^{\circ}$). In (d) symbols represent Class N (triangles), Class S
11	(boxes) and quadrants that fell in neither class (crosses).

LINEL CLASS (CROSSES).