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SUPPORTING MATERIAL: 
Additional Files and Figures

►Additional File 1: InferGene_Package.zip 
InferGene Package contains: Generator Artificial Genomes (genArtGen.cc and Linpack 
library),  InferOpe  (inferope.cc),  ZTop  (ZTop.c),  InferGene  (infergene.cc,  Linpack 
library) and Linpack library (blas1_d.c, blas1_d.o, blas1_d.h, linpack_d.c, linpack_d.o, 
linpack_d.h). This file is available upon request. Additionally, the user needs to download 
the CLR algorithm [1]. 

►Additional File 2: InferEcoli.xml 
SBML file [5] containing the regulatory model of E. coli.  Files used to infer the E. coli 
network: microarray data from M3D [2] (Affymetrix expression normalized via RMA [3] 
for 4345 genes and 189 experimental conditions); genome annotation from RegulonDB 
[4],  list  of  328  transcription  factors  and  operons  (4345  genes  are  clustered  in  3333 
operons). 

►Additional File 3: BioFunctEcoli.xls 
Classification of biological functions in E. coli from EcoCyc [6] using expression profiles 
not included on the training set. We show the degree of connectivity for each biological 
function  depending  on  the  number  of  protein-protein  interactions.  We also show the 
number  of  genes  regulated  by  1-10  TFs  and  non-regulated  genes  (from  constitutive 
promoters). 



►Additional File 4: ScoringConditions.xls
Histogram of the expression error (i.e., error between the measured expression and the 

predicted one) across all genes for a fixed condition Ψ c=
1
n
∑

g∈genes

∣ygc− ygc∣  where n is 

the  number  of  genes.  This  analysis  has  been  done  for  E.  coli using  the  M3D 
compendium. 

►Additional File 5: ScoreOperonsEcoli.xls
Prediction of InferGene inferring the E. coli network over 189 microarrays. We show the 

expression error for each operon  Δop=
1
n

1
m

∑
g∈operon

∑
c∈set

∣ygc− ygc∣  , where  ˆgcy   is the 

predicted expression profile under conditions that were not used in the original training 
data set, gcy  the measured gene expression of each operon, n the number of operons, and 
m the number of conditions.

►Additional File 6: ScoreOperonsAG.xls
Prediction  of  InferGene for  an  artificial  genome  of  500  genes  with  250  different 
perturbations  generated  with  GAG.  We  show  the  expression  error  for  each  operon 

Δop=
1
n

1
m

∑
g∈operon

∑
c∈set

∣ygc− ygc∣  , where ˆgcy   is the predicted expression profile under 

conditions that were not used in the original training data set,  gcy  the measured gene 
expression of each operon, n the number of operons, and m the number of conditions. In 

addition, we show the parameter deviation  Γ=
1
n

1
p
∑

g∈genes
∑

p∈ param

∣βgp−β gp∣  where βgp  

is the predicted parameter, β gp  the model parameters, and p the number of parameters.



The InferGene package

The InferGene package is a set of applications (see Fig. S1) developed in C++, which can 
be  applied  to  infer  regulatory  networks  from  expression  profiles.  The  Generator  of 
Artificial Genomes is applied to build synthetic models and microarray data. InferOpe is 
an algorithm to infer operons based on co-expression patterns. This is useful only in case 
of prokaryotes. The CLR algorithm outputs the z-scores for all possible interactions, and 
ZTop converts  this  z-score  matrix  into  a  matrix  of  regulations  according  to  a  given 
threshold (e.g.,  5-10).  Finally,  InferGene constructs  the SBML model  of the inferred 
regulatory network. 

Fig. S1: Flux diagram of the InferGene package applications.



In silico generation of microarray data

We  have  developed  a  Generator  of  Artificial  Genomes  (GAG)  to  in  silico  create 
expression profiles (see Fig. S2). To design such genomes, we specify the topological 
properties of the network. Then, random kinetic parameters are associated. The output is 
the  set  of  synthetic  expression  profiles,  as  well  as  the  network  final  topology  and 
parameters. In Fig. 3 of the manuscript we show the algorithm performance for several 
artificial genomes. In Fig. S3 we show the prediction of the kinetic parameters for the 
correctly predicted regulations, achieving correlations above 0.90.

Fig. S2: Generation of an artificial genome model to get synthetic microarray data. We 
have developed a computational algorithm (GAG) to  construct such model, where the 
user  inputs  the  total  number  of  genes  and  TFs  as  well  as  the  percentage  of  single 
regulations  and  cooperations.  GAG  generates  a  random  network  following  those 
specifications  with  the  corresponding model  parameters:  the  constitutive  transcription 
rate a, the regulatory coefficients b_TF, and the mRNA degradation coefficient   (see 
ODE equations in the manuscript). In the presented network, consisting of 5 operons, 3 
TFs and 9 non-regulatory genes (g_i), arrows mean activation and blunt lines repression. 
The  regulatory function  (f)  is  assumed  linear  and  the  expression  is  calculated  in  the 
steady  state  (ss),  where  =a/ and  TFb_TF.  Later,  GAG  gives  the  in  silico 
microarray data. We select a TF or a subset of TFs and we perturb the expression in the 
steady state (∆_g,c). Then we recomputed the whole expression profile using the model. 
Therefore, GAG outputs the list of operons and TFs, the regulatory network (adjacency 
matrix) with the corresponding model parameters, and the synthetic expression profiles 
(represented as a color-scale grid, where genes are disposed in rows and experiments in 
columns).



Fig. S3: Prediction of the model parameters for an artificial genome of 500 genes and 50 
TFs with 50 perturbations for training. Each condition is  generated by perturbing the 
steady-state  of  12%  of  the  TFs.  We  show  the  correlation  between  the  estimated 
parameters  (^,  ^_1,  ^_2,  ^_coop)  and  the  predefined  parameters  (,  _1,  _2, 
_coop) for the model. In (a) estimation of basal transcription rates (), in (b) regulatory 
coefficients for promoters regulated by one TF (_1), in (c) regulatory coefficients for 
promoters regulated by more than one TF (_2), and in (d) regulatory coefficients for 
synergistic effects (_coop). Every plot shows a correlation coefficient (r) above 0.90.

Fig.  S4: Prediction fitness for different sets  of perturbed TFs (% referred to the total 
number of TFs) per condition when generating  in silico expression data (sensitivity in 
gray, precision rate in white). In (a) single interactions, in (b) combinatorial regulations.



To generate in silico data we have perturbed the TF steady states and we recomputed the 
rest  of gene expression values.  By perturbing one single  TF per  condition  is  a  good 
approach to unveil single interactions, but at this time synergistic regulations are difficult 
(even impossible) to capture. On the other hand, by perturbing many TFs at the same time 
can produce. In that way, an optimization of the number of TFs to be perturbed in each 
experimental condition is required for generating synthetic microarray data. We evaluate 
the fitness as precision and recall for different TF sets (see Fig. S4).

The performance of the algorithm depends on the quantity and also quality of data. As 
synthetic  data  are  very  clean,  the  efficiency  of  the  algorithm  reaches  high  values. 
However,  with  real  data  this  performance  can  be  dramatically  reduced  due  to  the 
microarray noise. Therefore, we have added a term of noise to the  in silico  expression 
values to generate more realistic data. In that way, the noisy value is y=1 +η y , where 
η is a uniform random distribution between its maximum amplitude (i.e., -|η|< η< |η|). In 
Fig. S5 we show the efficiency of the algorithm using synthetic data (200 conditions from 
a  genome  of  5000  genes)  for  different  noise  amplitudes.  The  noise  in  the  E.  coli 
expression data used corresponds to |η|<0.1 (see Fig. S6), thus we expect high inference 
efficiencies. 

Fig. S5: Efficiency of the algorithm versus the noise level using synthetic data. We show 
the precision rate  (white)  and sensitivity  (gray)  for  different  noise  amplitudes  on the 
expression value. Here, we have selected interactions with z-score up to 6. We have used 
an artificial genome of 5000 genes and 500 TFs, generating 200 conditions by perturbing 
randomly the 12% of TFs in each condition without combinatorial regulations.



Fig. S6: Noise distribution in the E. coli expression data used
computed throughout the gene expressions from the same operon.

Cut-off threshold selection

For  every pair  operon-TF a Z-score is  calculated  using its  Mutual  Information  (MI). 
Then,  to  infer  the  topology  of  the  network  it  is  necessary  to  establish  a  threshold. 
Regulations  will  be  selected  if  their  Z-score  is  above  the  threshold.  However,  it  is 
difficult to fix that, and this value may depend on the nature of the system and the data 
used.  To  address  this  question,  we  have  constructed  several  artificial  genomes  with 
different  size  and  generated  expression  data.  We  define  F-score  (F)  as  the  global 
performance of the inference following

F=
2 PS
P+S

where P is  the  precision rate  and S the  sensitivity.  We have  analyzed the  degree of 
prediction of the resulted network for different threshold values showing an optimum 
value for the threshold (see Figs. S7). We have generated two genomes, one of 500 genes 
and 50 TFs and another of 5000 genes and 500 TFs. Then, we have created for each one 
two data sets varying the number of conditions (from 100 to 250 in the first case, and 
from 300 to 600 in the other one). 

In  Fig.  S8  we  superpose  the  resulting  F-score  for  the  different  systems  observing  a 
common region to select the optimum threshold value (approximately between 2 and 7). 
Values close to 2 will have a higher sensitivity than precision, and values close to 7 will 
have  higher  precision  than  sensitivity.  Notice  that  instead  for  low  scales  where  the 
inference reaches an optimum, for large genomes the F-score reaches a light flat from a 
given threshold value giving a more precise model. This allows us to fix 6.92 as threshold 
to infer the E. coli regulatory model.



Fig. S7: Efficiencies (Precision, Sensitivity and F-score) with respect to the 
selected Z-score threshold for different artificial genomes and data sets.

Fig. S8: F-score of several inferred topologies against the selected Z-score threshold.



Genome annotation

We have superposed genome annotation to study the best predicted biological functions. 
For that, we have used the EcoCyc classification to group genes by biological functions 
and to rank those groups according to their level of prediction (see Fig. S9).

Fig. S9: Scoring E. coli biological functions. (a) Histogram of the normalized expression 
error on the transcriptomic profile predicted for each biological function (Δbf). Functions 
from the EcoCyc database at minimum level. (b,c) Linear regressions between Δbf  and 
the number of constitutive operons for the biological functions of gene product location 
and cell processes, respectively.

Error distributions

We have computed the expression error in operons by classifying them according to their 
promoter  type  (i.e.,  constitutive,  regulated  by  one  TF,  regulated  by  two  TFs,  and 
regulated by more than two TFs). In Fig. S10 we plot this showing that the operons with 
two-regulated promoters are better predicted.

Fig. S10: Expression error in operons with different types of promoters.



We have analyzed the predictive power of InferGene by calculating a score based on the 
error made on the expression (Δop), and other score based on the error made on the model 
parameters (Γ). To perform such analysis we have generated a network with GAG of 500 
genes across 250 conditions (see Fig. S11). The median for Δop was 0.009, and for Γ was 
around 0.01.

Fig. S11: Predictive power of InferGene against an artificial genome of 500 genes accross 
250 different experiments generated with GAG. (a) Distribution of the expression errors 
in the operons (Δop). (b) Distribution of the parameter errors (Γ). White bars represent 
random distributions  in both cases.  The operons in which there are only TFs are not 
considered to compute those scores.

It is clear that a large number of experimental conditions (perturbations) is required to 
construct an accurate regulatory model. However, not all conditions contribute equally to 
unveil such regulations. Perturbations that affect the TF expressions are very fruitful to 
capture the transcription network. At the same time, there are conditions in which the 
model predicts better the expression profile. In that way, the histogram computed with the 
M3D  compendium  for  E.  coli, under  conditions  not  included  in  the  training  set, 
approximately shows a normal distribution (see Fig. S12). Here, we score each condition 

using Ψ c=
1
n
∑

g∈genes

∣ygc− ygc∣ . Such scores are provided in the additional file 4.

Fig. S12: Histogram of the expression error across all genes for a fixed condition.  
This plot is referred to E. coli.



In  addition,  we  have  performed  a  K-fold  cross-validation  (K=9,  dividing  the  set  of 
conditions in 9 parts) to validate the predictions. Like that, we use 169 conditions for 
training and 20 for testing, repeating the process 9 times. Notice that one testing set has 
29 conditions. In Fig. S13 we plot all histograms of Δop  for each fold showing that all 
distributions are not significantly different. Moreover, we have computed the asymptotic 
distribution (mean 0.04) by averaging all previous histograms (see Fig. S14).

Fig. 13: Histograms of the expression errors in the operons (Δop) for each fold.

Fig. S14: Histogram of the asymptotic expression errors in the operons (Δop) computed by 
K-fold cross-validation (K=9).



Prediction of expression profiles

We have applied our kinetic model for E. coli to obtain the transcriptomic profiles under 
several  experimental  conditions  (those  included  in  the  training  set  and  the  new 
perturbations). Each plot shows the experimental profile (blue line) and the profile by our 
model (red line) in the best predicted operons according to error based on the expression 
values (∆op).
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Fig.  S15:  Predicted  profiles  of  operons  with  constitutive  promoters  (model  in  red, 
experiments in blue).

Operons with one-regulated promoters:
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Fig.  S16:  Predicted  profiles  of  operons  with  promoters  by  one  TFs  (model  in  red, 
experiments in blue).



Operons with two-regulated promoters:
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Fig. S17: Predicted profiles of operons with promoters regulated by two TFs (model in 
red, experiments in blue).

Operons with high-order promoters:
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Fig. S18: Predicted profiles of operons with promoters regulated by three or more TFs 
(model in red, experiments in blue).



Redesign of global transcription regulation

Gene  regulations  allow  organisms  to  adapt  their  cellular  processes  under  external 
changes. In that way, one interesting question is to study the redesign of transcription 
regulations at the global level. For that, knockouts of transcription factors, especially if 
they are master regulators, constitutes a good starting point.  In addition, we study the 
addition of new regulatory links in the genome network by putting together wild-type 
promoters and ORFs of TFs. For that, plasmids or chromosomal insertions can be used. 

We have applied the model to predict the expression profiles under knockouts of TFs and 
transcriptional  rewirings  in  E. coli  [7] (see Fig.  S19).  For  the TF knockouts,  we use 
conditions from the training set, where the TFs appY, crp, fnr, recA, arcA, cspA, oxyR,  
soxS,  and hns are perturbed. For simplicity and to work with a linear model, we infer a 
new  model  by  neglecting  the  combinatorial  regulations.  In  addition,  we  incorporate 
interactions between TFs from RegulonDB to improve the transcription regulatory core. 
This model also gives good results when predicting expression profiles. We impose in the 
model the knockout effect by removing the kinetic interaction of the corresponding TF. 
Then, we solve the linear system. In Fig. S21 we plot the predicted expression versus the 
experimental one (for the whole transcriptome and for the TFs) for all knockouts. We 
show how the model is able to reproduce the entire transcriptomic profile. We also study 
the  effect  on  the  cell  of  the  knockout  versus  the  wild-type.  We  show  how  some 
regulations  (e.g.,  appY)  are  not  necessary  to  maintain  a  given  expression  profile. 
However,  the lack of other  regulations,  especially from transcription hubs (e.g.,  crp), 
confers to the cell a totally different expression profile (see Fig. S20).

On the other hand, we use Isalan  et al. data [7] as an experimental validation for the 
prediction  of  rewired  transcription.  These  recently  published  microarray  data  are  in 
Affymetrix units. A rewiring is achieved by using a plasmid with wild-type promoters 
and TFs. Then, we can over-express wild-type promoters fused to TFs belonging to other 
operons. Those TFs control many genes. The resulting cell has a new regulatory map. We 
modify accordingly the model to account for such perturbations. We solve the system of 
equations given by the TF network to get the expressions for the regulators. Then, we 
obtain the whole transcriptomic profile. The two rewirings here considered are: 1) the 
promoter upstream of malT with the ORF of fliA, and 2) the promoter upstream of rpoS 
with  the  ORF  of  ompR.  In  Fig.  S21  we  plot  the  predicted  expression  versus  the 
experimental  one (for the whole transcriptome and for  the TFs)  for  the two rewiring 
experiments.  We show how the  model  is  able  to  reproduce  the  entire  transcriptomic 
profile. Notice that we have corrected the mean of the Isalan’s data distribution to the one 
obtained from the training set data to use our model. In addition, the model has been 
bounded according to the Affymetrix scale in order to account for saturation effects in 
gene regulation.



Fig. S19: Left: scheme of gene (TF) knockout. Right: scheme of transcription rewiring. 
Arrows represent transcription regulations.

Fig S20: Plot of the experimental gene (TF) expression of knockouts versus the wild-type 
(WT). In (a) knockout of appY versus WT, in (b) knockout of crp versus WT. 

The values of the relative expression error (∆op) are (first column: error computed using 
all genes, second column: error computed only using the TFs): 

Knockout

recA 0.037 0.040

appY 0.042 0.039

arcA 0.051 0.049

arcA, fnr 0.056 0.053

fnr 0.051 0.048

oxyR 0.050 0.044

oxyS 0.041 0.039

crp 0.062 0.089

cspA 0.048 0.047

hns 0.054 0.065

Rewiring

Promotor=rpoS, ORF=ompR 0.178 0.162

Promotor=malT, ORF=fliA 0.187 0.163







Fig. S21: Gene expression prediction versus experimental values [2] in knockouts of TFs. 
We  solve  the  system  of  linear  equations  from  the  inferred  model  by  removing  the 
regulatory  effect  of  the  corresponding  TF.  Right:  whole  transcriptomic  profile.  Left: 
profile of TFs. 



Fig. S22: Gene expression prediction versus experimental values [7] in rewired bacteria. 
We solve the system of linear equations from the inferred model by imposing the new 
regulatory effects of the corresponding TFs. Right: whole transcriptomic profile. Left: 
profile of TFs. 



Non-transcriptional regulations

Our approach can also be applied to infer subnetwork models. In Gardner et al. 2003 [8], 
the NIR algorithm was developed and applied to the SOS pathway (an E. coli regulatory 
network of 9 genes in charge of DNA reparation). The algorithm generated a linear model 
from expression data. Here, we have applied our algorithm to the same system with the 
aim  of  comparing  these  two  approaches.  For  that,  we  have  used  the  same  data  set 
published there. We have applied InferGene to obtain two models of such system. The 
first  model  only assumes  interactions  between genes  and TFs,  and the second model 
(effective model) considers all genes as possible regulators. 

Fig. S23: Efficiencies (precision rate, sensitivity, and F-score) of the inferred topologies 
using NIR and InferGene. With InferGene we have obtained two networks: the first one 
takes just the pairs genes-TFs, and in the second model all genes can act as regulators.

In Fig. S23 we plot the efficiencies for the three inferred models. We show how the NIR 
algorithm captures lightly a better topology, and how the effective model by InferGene is 
more accurate than the pure transcriptional one. However, NIR requires the specification 
of  the  degree  of  connectivity.  This  fact  can produce  high  inaccuracies  in  large-scale 
networks where the connectivity distribution is mostly scale-free, although it gives good 
results in small systems. Then, we applied the models to predict the expression profiles. 
In Fig. S24 we plot the relative expression errors in average for the three models. We can 
see how the effective model has lowest error in the prediction. In addition, in Fig. S25 we 
detail that errors by genes.



Fig. S24: Relative expression error in average for the SOS pathway using the inferred 
models from NIR and InferGene. Maximum errors are also plotted by means of bars.

Fig.  S25:  Relative expression errors of  genes  from the  SOS pathway using NIR and 
InferGene.
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