Histone H3 Lys79 Methylation is Required for Efficient Nucleotide Excision Repair

in a Silenced Locus of Saccharomyces cerevisiae

Shubho Chaudhuri, John J. Wyrick and Michael J. Smerdon*

Biochemistry and Biophysics, School of Molecular Biosciences, Washington State

University, Pullman, WA 99164-4660

Supplemental Table 1: Relative expression¹ of certain NER genes between H3 K4,79R mutant and *wt* cells

S.No	Name of Gene	Fold change ²
1	Rad2	NC ³
2	Rad4	NC
3	Rad14	NC
4	Rad1	NC
5	Rad7	NC
6	Rad10	NC
7	Rad25	NC
8	TFB2	NC
9	TFB3	NC
10	TFB1	NC
11	SSL1	NC
12	Rad3	NC
13	Rad26	NC
14	Rad16	NC
15	Rad23	NC

¹ Data in Table 1 were generated from Microarray data accession number GSE6319 (<u>http://www.ncbi.nlm.nih.gov/geo/</u>) (17)

²Fold change was determined as described in Martin et al, 2004 (25).

³NC, no change.

SUPLIMENTARY FIGURE LIGANDS

Figure S1: Expression of *HML* α 1, *RPB2* and *GAL10* genes in H3 K79R and H3 K4,79R mutants. (A) RT-PCR analysis was performed on total RNA from *wt*, H3 K4,79R and H3 K79R cells using primers specific for *RPB2*, *HML* α 1 and *GAL10* gene. The mRNA levels of the *ACT1* gene were used as a loading control. (B) Expression of *HML* α 1 in *wt*/ Δ sir2 and H3 K4,79R/ Δ sir2 cells.

Figure S2. MNase digestion patterns for *GAL10* loci in H3 methylation mutants. (A) Spheroplasts were isolated from WY139 (*wt*) and methylation mutants, treated with different concentrations of MNase (10 U/ μ l stock solution) and genomic DNA hybridized with a probe specific for the *GAL10* ORF. (B) Quantitative analysis of MNase accessibility at *GAL10* is expressed as the ratio of mono- to tri-nucleosome signal at different concentrations of MNase.

Figure S3. NER and MNase accessibility of the RPB2 locus in Sir2 deletion mutants.

(A Western blot showing Sir2 levels in *wt* and H3,K4,79R cells. The level of α -tubulin subunit served as a loading control (lower panel). (B) MNase digestion of WY139 (*wt*) and H3K4,79R mutants. Spheroplasts were isolated, treated with different concentrations of MNase (10 U/µl stock solution) and genomic DNA was isolated, separated by agarose gel electrophoresis, blotted and hybridized with a probe specific for the *RPB2* ORF.

Figure S4. Nucleotide excision repair at the *HML* locus in dot1 Δ and H3 K79G mutants. Cells were irradiated with 100 J/m² UV light and allowed to repair in the dark at 30°C for various times. The time course of CPD removal from the *HML* locus is shown for the H3 K79G mutants (panel A) and the dot1 Δ mutant (panels C). Data represent the mean ±1 SD for three independent experiments. To the right of each graph is shown

MNase digestion profiles for *HML* chromatin from the H3 K4,79R mutant (B) and dot1 Δ mutant (D). Data were obtained as described in legend to Figure 3.

в

Fig S1

Fig S2

в

Fig S3

Α

Fig S4