Supporting Information

Yao et al. 10.1073/pnas.0900212106

SI Materials and Methods

Plasmids and Reagents. For expression in enteropathogenic *Escherichia coli* (EPEC), cycle-inhibiting factor (Cif) was cloned into pBluescript II SK(–). For recombinant expression in *E. coli*, Cif homolog in *Burkholderia pseudomallei* (CHBP) was constructed into pGEX-6P (Amersham Biosciences). For transfection in mammalian cells, Cif family members were cloned into pCS2(+) with an N-terminal EGFP tag. Truncation and deletion mutants were constructed by standard PCR cloning strategy, and point mutants were generated by the QuikChange site-directed mutagenesis kit (Stratagene). All of the plasmids were verified by DNA sequencing. Cell culture products were from Invitrogen, and all other chemicals were Sigma–Aldrich products unless noted.

Protein Purification and Crystallization. For expression, the BL21 (DE3) strain (Novagen) harboring the CHBP-N48 construct was induced for 8 h at 22 °C in the presence of isopropyl-βthiogalactopyranoside after A_{600} reached 0.8. The GST fusion protein was purified by glutathione-Sepharose resin, and the GST tag was removed by PreScission protease digestion. The protein was further purified by ion exchange chromatography followed by gel filtration chromatography (Superdex 200; Amersham Biosciences). The SeMet-labeled protein was expressed in the methionine-auxotrophic strain B834 (DE3) (Novagen) (1) and purified the same as that for the native protein. For crystallization, purified CHBP proteins were concentrated to 5 mg/mL in a buffer containing 50 mM Tris HCl and 0.15 M NaCl (pH 7.9). Crystals of native and SeMet-labeled protein were obtained in 32% PEG 1000, 100 mM sodium cacodylate (pH 6.0), and 5% (vol/vol) glycerol in 7 days by using the hangingdrop vapor diffusion method at 20 °C.

Data Collection, Structural Determination, and Refinement. The anomalous diffraction data (Se-Peak) for the SeMet-labeled CHBP crystal were collected at the KEK radiation facility at a wavelength of 0.9791 Å at 95 K and processed with HKL-2000 (2). The structure was determined and autobuilt by the Se-single-wavelength anomalous diffraction phasing method using the program PHENIX (3), which provided a 75% complete model. The remaining residues of the model were manually built with COOT (4). The structure was further refined to 2.1 Å by using native crystal data in PHENIX and Refmac5.0. The quality of both models was checked with PROCHECK program (5). Statistics of data collection and refinement are listed in Table S1. All structural pictures were drawn by using PyMOL (http:// www.delanoscientific.com/).

Cell Culture, Transfection, EPEC Infection, and Cell Cycle Analysis. 293T and HeLa cells obtained from American Type Culture Collection were grown in Dulbecco's modified Eagle's medium (DMEM; HyClone) containing 10% FBS and 2 mM L-glutamine

at 37 °C in a 5% CO₂ incubator. Calcium phosphate precipitation was adopted for transfection of 293T cells. Purified recombinant proteins were delivered into HeLa cells by using Profect-P1 protein delivery reagent (Targeting Systems) according to the manufacturer's instructions. HeLa cells were synchronized at the G₁/S boundary by double-thymidine block before protein delivery was performed in serum-free medium for 4 h. FBS was added back to 10%, and cells were further cultured for 14 h until the time of assay.

For EPEC infection, a single EPEC colony was inoculated into 0.5 mL of LB and statically cultured overnight at 37 °C. On the day of infection, bacterial cultures were diluted by 1:30 in DMEM and further cultured at 37 °C with 5% CO₂ for 3 h. Infection was carried out by adding the DMEM culture of EPEC directly to HeLa cells with a multiplicity of infection of 200:1, and the infection was usually continued for 1 h at 37 °C in the 5% CO₂ incubator. Cells were then washed three times with PBS and cultured for 18 h in DMEM supplemented with 10% FBS and 200 μ g/mL gentamicin before cell cycle analysis.

To determine the cell cycle distribution, trypsin-treated HeLa cells were fixed and permealized in cold 70% ethanol followed by propidium iodide (PI) staining. DNA content was measured on Cell Lab Quanta SC flow cytometer (Beckman Coulter). To assay transiently transfected cells, trypsin-treated 293T cells were fixed in 3% formaldehyde and permealized in 70% ethanol. Both the PI signal for DNA content and EGFP signal were monitored simultaneously on the flow cytometer, and EGFP-positive cells were gated out and analyzed for PI signal.

E-64 Labeling and Mass Spectrometry Analysis. Twelve micrograms of Cif or CHBP-N48 protein was incubated overnight at 30 °C in a buffer containing 25 mM Tris·HCl (pH 7.6), 150 mM NaCl, and 4 mM DTT, with or without 400 μ M E-64. Reactions were stopped by adding SDS loading buffer and subjected to SDS/ PAGE. For mass spectrometry analysis, protein gel bands were destained with 25 mM NH₄HCO₃ and 50% methanol and reduced in 10 mM DTT for 40 min at 56 °C followed by alkylation in 55 mM iodoacetamide for 1 h in the dark at 20 °C. Proteins were then in-gel-digested with 10 ng/ μ L sequencinggrade modified trypsin (Promega) in 50 mM NH₄HCO₃ (pH 7.8) at 37 °C overnight. The resulting tryptic peptides were extracted and analyzed on a LTQ mass spectrometer (Thermo; Fisher Scientific) by nano-HPLC/MS/MS in the data-dependent mode (MS scan mass range was from 350 to 2,000 Da, and the top three most abundant precursor ions from each MS scan were selected for MS/MS scans). The proteins were identified through database searches performed on an in-house Mascot server (version 2.2, Matrix Science). The mass tolerance was 2 Da for precursor ions and 0.5 Da for MS/MS scans. The following variable modifications were chosen for database search: cysteine carbamidomethylation, E-64 labeling of cysteine, and methionine oxidation.

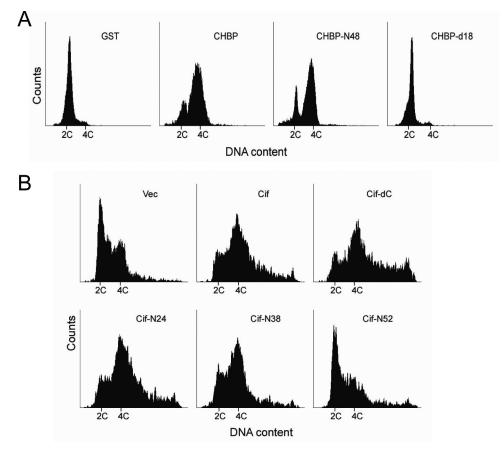
Studts JM, Fox BG (1999) Application of fed-batch fermentation to the preparation of isotopically labeled or selenomethionyl-labeled proteins. *Protein Expr Purif* 16:109– 119.

Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol* 276:307–326.

Adams PD, et al. (2002) PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr D 58:1948–1954.

^{4.} Emsley P, Cowtan K (2004) COOT: Model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132.

Laskowski AR, MacArthur WM, Moss SD, Thornton MJ (1993) PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993:283– 291.


Chain B

DN A S

Chain A

Fig. S1. Diagram of the overall structure of CHBP dimer in one asymmetric unit. Chain A is shown in orange and chain B is in blue. Secondary structures are numbered the same as shown in Fig. 2.

Fig. 52. Effects of truncation and deletion mutations of Cif family members on host cell cycle distribution. (*A*) Effects of CHBP-N48 and CHBP-d18 (deletion of residues 122–139 of CHBP). Purified proteins as indicated were delivered into G₁/S synchronized HeLa cells, and the cell cycle distribution of cells was examined by flow cytometry analysis as shown. (*B*) Cell cycle arrest activity of N-terminal truncation mutants of Cif. DNA contents of 293T cells transfected with indicated Cif constructs were measured. Cif-dC, the natural C-terminal truncation of Cif; Cif-N24, Cif-N38, and Cif-N52, truncations of the N-terminal 23, 37, and 51 residues of Cif, respectively.

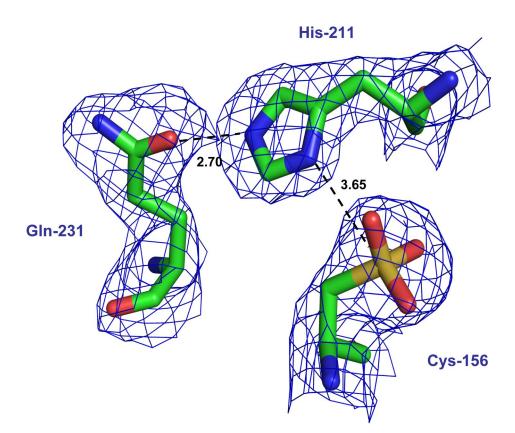
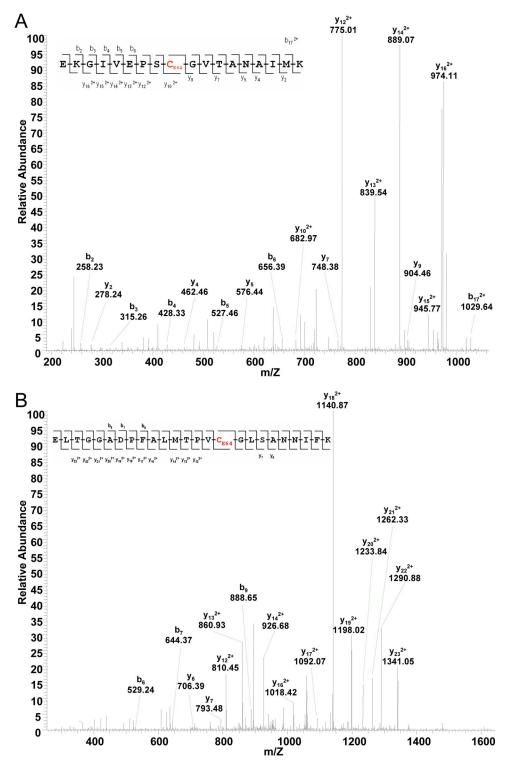



Fig. S3. Electron density map of the putative catalytic residues of CHBP. The oxidized Cys-156, His-211, and Gln-231 are shown in stick representation with σ A-weighted 2 $F_0 - F_c$ omit electron density map contoured at 1.0 σ .

DNAS

Fig. S4. Mass spectrometry spectra of tryptic peptides of Cif (*A*) and CHBP (*B*) containing E-64-modified cysteine. b and y ions are marked in the spectra. The amino acid sequence of the peptide is shown at *Upper Left* with the modified Cys highlighted in red. The fragmentation patterns that generate the observed b and y ions are illustrated along the peptide sequence.

Table S1. Crystallographic data

PNAS PNAS

Crystal	SeMet	Native	
Data collection statistics			
Space group	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	
Wavelength	0.9791	1.000	
a, b, c, Å	54.34, 78.00, 115.04	54.78, 79.92, 117.42	
Resolution range, Å*	50–2.56 (2.65–2.56)	50.0-2.10 (2.18-2.10)	
No. of unique reflections	16,544 (1,306)	30,618 (2,990)	
Completeness, %	97.9% (78.4%)	99.5% (99.4%)	
Redundancy	13.7 (11.2)	6.8 (6.5)	
$\langle l \sigma (l) \rangle$	13.9 (7.1)	18.5 (5.2)	
R _{merge} , %	8.8 (30.1)	6.0 (31.8)	
Refinement statistics			
Rwork/Rfree, % [†]	20.3/26.7	19.3/25.4	
No. of protein atoms	3,857	3,868	
No. of water atoms	70	260	
Bond length, Å	0.008	0.006	
Bond angles, °	1.11	0.94	
Ramachandran plot statistics			
Most favored regions, %	98.12	97.92	
Additional allowed regions, %	1.88	2.08	

*The data for the highest resolution shell are shown in parentheses. ${}^{\dagger}R_{\rm free}$ is calculated using 10% of the total number of reflections.

Table S2. Energy terms of dipeptide docking

PNAS PNAS

Table S2. Energy terms of dipeptide docking		Dipeptide	Score
Dipeptide	Score	THR-GLN	-16.172
ARG-ASN	-39.589	THR-SER	- 16.126
ASN-ARG	-39.489	ASN-LYS	-16.095
ARG-GLY	-37.087	ILE-GLN	-16.087
MET-ARG	-35.345	ALA-GLN	- 16.039
SER-ARG	-35.284	ARG-GLN	- 15.259
GLY-ARG	-34.954	GLY-SER	- 15.145
ARG-THR	-34.491	TYR-TRP	- 14.976
ALA-ARG	-33.958	SER-THR	- 14.974
ARG-ILE	-33.874	ALA-CYS	- 14.208
VAL-ARG	-32.973	MET-CYS	- 14.168
ILE-ARG	-32.74	SER-GLY	-14.158
CYS-ARG	-32.739	CYS-SER	- 14.145
THR-ARG	-32.096	THR-MET	-14.063
ASP-ARG	-32.046	GLN-LYS	-14.005
ARG-SER	-29.911	MET-SER	- 13.909
ARG-ALA LEU-ARG	-29.354 -29.135	THR-ALA VAL-SER	- 13.823 - 13.761
ARG-VAL	-28.396	THR-GLY	-13.705
ASN-GLY	-26.825	GLY-CYS	-13.508
GLN-ASN	-26.146	SER-VAL	-12.679
ARG-LEU	-25.306	Dipeptide	Score
LEU-ASN	-24.851	SER-ILE	-12.588
GLY-ASN	-23.512	ALA-SER	- 12.522
ASN-ASN	-23.493	ARG-GLU	- 12.411
ARG-CYS	-23.19	ASN-LEU	- 12.314
ASN-GLN	-23.185	LEU-SER	- 12.299
GLU-ARG	-23.147	LYS-GLN	- 12.228
GLN-GLN	-22.724	SER-MET	- 12.196
ASN-THR	-21.822	LEU-CYS	- 12.122
CYS-ASN	-21.771	VAL-CYS	- 12.092
GLN-ARG	-21.703	SER-CYS	- 12.047
VAL-ASN	-21.476	ILE-CYS	-11.949
MET-ASN	-21.472	THR-CYS	-11.637
GLN-GLY	-21.469	THR-LEU	-11.583
ASN-SER	-21.389	THR-THR	-11.431
LEU-GLN ILE-ASN	-21.05 -20.87	<i>LYS-</i> SER THR-VAL	- 11.181 - 10.864
SER-SER	-19.362	TYR-VAL	-10.855
ASN-VAL	-19.314	CYS-THR	-10.308
SER-GLN	-19.085	SER-LEU	-10.022
GLN-MET	-19.018	TYR-GLN	-9.795
ASN-ILE	-18.763	ASN-PHE	-9.622
Dipeptide	Score	LYS-CYS	-9.534
GLN-VAL	-18.718	LEU-THR	-9.482
GLN-LEU	-18.436	SER-ALA	-9.289
GLY-GLN	-18.431	CYS-ALA	-9.219
ASN-MET	-18.37	PHE-TYR	-9.142
GLN-CYS	-18.127	PHE-GLN	-9.085
GLN-ALA	-18.06	VAL-THR	-9.085
THR-ASN	-17.901	TYR-CYS	-8.958
LYS-ASN	-17.783	GLN-PRO	-8.444
CYS-GLN	-17.587	LEU-GLY	-8.417
CYS-CYS	- 17.581	ALA-LEU	-8.348
GLN-ILE	- 17.464	ILE-SER	-8.283
	-17.386 -17.37	MET-ILE	-8.283 -8.186
ALA-ASN CYS-GLY	-17.37 -17.338	SER- <i>LYS</i> THR-ILE	-8.019 -8.019
GLN-THR	- 17.249	TRP-TYR	-8.019 -8.019
GLN-THR GLN-SER	-17.249	PRO-GLN	-8.019 -7.896
MET-GLN	-17.135	ILE-THR	-7.731
ASN-CYS	-17.123	GLY-THR	-7.6
SER-ASN	-17.018	ALA-THR	-7.387
ASP-GLN	-16.642	MET-THR	-7.337
VAL-GLN	-16.429	Dipeptide	Score

Dipeptide	Score	Dipeptide	Score
TRP-GLY	-7.184	GLN-PHE	-2.391
CYS-VAL	-7.067	VAL-VAL	-2.36
PRO-ASN	-6.994	GLY-LEU	-2.252
PRO-PHE	-6.76	TRP-VAL	-2.211
GLY-GLY	-6.759	TYR-LEU	-2.204
ALA-GLY	-6.684	PRO-TRP	-2.189
GLY-ALA	-6.667	GLU- <i>LYS</i>	-2.14
CYS-ILE	-6.635	TYR-ASN	-2.111
LEU-MET	-6.496	PHE-LEU	-2.099
ASN-TRP	-6.326	ASP-ILE	-2.034
ALA-ILE	-6.274	GLU-CYS	-1.88
ALA-PHE	-6.056	PHE-PRO	-1.874
VAL-GLY	-6.044	MET-VAL	-1.858
GLY-VAL	-5.994	HIS-PHE	-1.849
TRP-SER	-5.95	ASP-LEU	-1.801
ASP-THR	-5.936	LEU-TRP	-1.777
ASP-SER	-5.93	ALA-PRO	-1.772
ARG-ASP	-5.837	LEU-LEU	-1.767
<i>LYS</i> -THR	-5.826	SER-PHE	-1.587
ALA-MET	-5.712	GLY-ILE	-1.586
CYS-LEU	-5.655	ARG-MET	-1.422
PHE-CYS	-5.593	ALA-TRP	-1.407
ASP-TRP	-5.525	TYR- ARG	-0.994
CYS-MET	-5.463	SER-PRO	-0.957
GLY-TRP	-5.257	ASN-PRO	-0.926
PHE-ARG	-5.252	PRO-PRO	-0.868
MET-GLY	-5.106	MET-PRO	-0.814
VAL-LEU	-5.059	TRP-PHE	-0.78
ALA-VAL	-5.047	LEU-PHE	-0.776
TYR-MET	-4.988	PHE-MET	-0.688
MET-PHE	-4.828	PRO-CYS	-0.654
ARG-TYR	-4.693	PHE-HIS	-0.637
CYS-PRO	-4.603	ASP-ASP	-0.511
ILE-GLY	-4.552	ILE-PHE	-0.49
ILE-MET	-4.43	ILE-LYS	-0.432
VAL-MET	-4.413	PRO-ALA	-0.404
GLY-MET	-4.408	LEU-ASP	-0.366
CYS-PHE	-4.335	ASP-MET	-0.311
LEU-ALA	-4.324	GLU-SER	-0.198
MET-ALA	-4.25	TRP-ALA	-0.028
PHE-PHE	-4.219	PRO-ILE	0.05
ASP-ASN	-4.217	LYS-ALA	0.153
PHE-ILE	-4.216	ALA-LYS	0.176
THR-LYS	-4.132	GLU-THR	0.401
SER-TRP	-3.971	PRO-TYR	0.424
ALA-ALA	-3.927	LEU-ILE	0.446
ILE-ILE	-3.827	GLY- <i>LYS</i>	0.466
PHE-TRP	-3.728	ILE-TRP	0.546
MET-MET	-3.698	LYS-GLY	0.568
VAL-ALA	-3.511	PRO-THR	0.875
ASP-CYS	-3.491	CYS-GLU	0.924
VAL-ILE	-3.487	CYS-ASP	0.939
ILE-ALA	-3.459	ASP-VAL	0.954
ILE-LEU	-3.448	ASP-LYS	0.999
MET-LEU	-3.24	VAL- <i>LYS</i>	1.092
ILE-TYR	-3.153	VAL-TRP	1.13
ILE-VAL	-3.097	TYR-GLY	1.16
LEU-VAL	-2.94	ASN-GLU	1.265
TYR-PHE	-2.929	GLY-PRO	1.316
GLN-GLU	-2.908	VAL-ASP	1.368
GLU-ASN	-2.887	ASP-PRO	1.437
PRO-GLY	-2.883	VAL-PRO	1.451
GLU-GLN	-2.756	THR-GLU	1.467
PRO-MET	-2.561	GLN-ASP	1.48

PNAS PNAS

Dipeptide	Score
LEU-LYS	1.815
ILE-PRO	2.072
MET-TRP	2.328
SER-GLU	2.407
PRO-LEU	2.439
PRO-VAL SER-ASP	2.452 2.465
ASP-ALA	2.405
MET-ASP	2.638
PHE-LYS	2.866
SER-TYR	3.204
HIS-PRO	3.313
THR-PRO	3.321
CYS-LYS	3.345
GLU-GLY	3.453
ASN-ASP	3.488
LYS-LEU	3.73
TRP-CYS	3.751
TYR-ALA	3.789
THR-ASP PRO-SER	3.804 3.9
ASN-TYR	3.97
ASP-GLY	4.614
MET-LYS	4.748
LYS-PRO	4.792
PHE-GLY	4.792
ILE-GLU	5.151
TRP-PRO	5.338
LYS-ILE	5.385
GLY-ASP	5.422
PHE-ASP	5.467
TRP-LEU	5.697
LYS-VAL	5.701
GLY-PHE	5.779
GLU-ALA PHE-THR	6.059 6.265
ALA-ASP	6.282
TYR-ASP	6.312
VAL-PHE	6.318
ASP-GLU	6.418
LYS-MET	6.491
MET-GLU	6.496
ILE-ASP	6.505
LEU-PRO	6.566
VAL-GLU	7.002
PHE-SER	7.005
TRP-ASP	7.34
TRP-ILE	7.573
VAL-TYR	7.77
GLY-GLU LYS-LYS	8.135 8.29
GLU-VAL	8.295
THR-PHE	8.552
GLU-PHE	8.737
GLU-LEU	8.75
GLY-TYR	9.016
ALA-TYR	9.304
GLU-MET	9.469
GLU-ILE	9.483
ARG-LYS	9.741
LEU-GLU	10.013
LYS-ARG	10.025
ALA-GLU	10.094
PHE-VAL	12.248
GLU-GLU	12.688

PNAS PNAS

Dipeptide	Score
PRO-LYS	12.765
PHE-GLU	13.225
GLU-ASP	14.108
ASP-TYR	14.773
LYS-ASP	14.992
LYS-GLU	16.133
ASP-PHE	17.445
PRO-ASP	18.051
PRO-GLU	18.363
TYR-ILE	19.07
TYR-GLU	20.391
GLU-TYR	22.169
GLU-PRO	22.402

Left column, dipeptide sequence; right column, energy score of docked dipeptide/CHBP complex. The table includes all the 314 dipeptides, for which binding complex can be generated. Arginine and lysine residues are shown in bold and italics, respectively.