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SI Methods. Method of frequent-pattern mining (1, 2).

Table S1 is an example for the transaction database, DB, in
which the minimum support threshold is 3.

First, a scan of DB derives a list of frequent items, (F :4), (C:4),
(A:3), (B:3), (M:3) (the number after the colon indicates the
support), in which items are ordered in frequency-descending
order.

Second, the root of a tree is created and labeled with ‘‘null.’’
The FP-tree is constructed as follows by scanning the transaction
database DB the second time.

1. The scan of the first transaction leads to the construction of
the first branch of the tree: �(F:1), (C:1), (A:1), (M:1)�. Notice
that the frequent items in the transaction are listed according to
the order in the list of frequent items.

2. For the second transaction, since its (ordered) frequent item
list �F, C, A, B, M� shares a common prefix �F, C, A� with the
existing path �F, C, A, M�, the count of each node along the prefix
is incremented by 1, and 1 new node (B:1) is created and linked
as a child of (A:2) and another new node (M:1) is created and
linked as the child of (B:1).

3. For the third transaction, since its frequent item list �F, B�
shares only the node �F� with the F -prefix subtree, F�s count is
incremented by 1, and a new node (B:1) is created and linked as
a child of (F:3).

4. The scan of the 4th transaction leads to the construction of
the second branch of the tree, �(C:1), (B:1)�.

5. For the last transaction, since its frequent item list �F, C, A,
M� is identical to the first one, the path is shared with the count
of each node along the path incremented by 1.

To facilitate tree traversal, an item header table is built in
which each item points to its first occurrence in the tree via a
node-link. Nodes with the same item-name are linked in se-
quence via such node-links. After scanning all of the transac-
tions, the tree, together with the associated node-links, are
shown in Fig. S1.
Bayesian network method. Bayesian network (BN) provides a tool
for representing joint probability distributions of many random
variables. It is particularly effective in domains where the
interactions between variables are fairly local: each variable
directly depends on a small set of other variables. Bayesian
networks have been applied extensively for modeling complex
domains in different fields. This success is due both to the
flexibility of the models and to the naturalness of incorporating
expert knowledge into the domains (3).

A Bayesian network, also called causal network, consists of the
following:

1. A set of variables and a set of directed edges between
variables.

2. Each variable has a finite set of directed edges between
variables.

3. The variables together with the directed edges form a directed
acyclic graph(DAG).

4. To each variable A with parents B1, . . . ,Bn, there is attached
the potential table P(A�B1, . . . ,Bn).

A bayesian network must have 2 parts. One of them is directed
acyclic graph G composed of k nodes, and the other is one
conditional probability table (CPT) (4). Conditional probability
could be expressed in P(Vi �(Vi)), to represent relationship of
nodes and their parents. Probabilities of the nodes with no
parents are defined to transcendental probability. A united

probability could be expressed according to a conditional prob-
ability chain. The common format is:

P�V1, V2, . . . , Vk� � �
i�1

n

P�Vi��Vi�1 . . . V1�� [1]

From the transcendental probability, according to Bayesian
rules, one can calculate the distribution of conditional proba-
bility of nodes we are interested in. In theory, given the complete
united probability function of a random variable, any lower-
order united probability could be computed according to the
following format (5–7):

P�V1, V2, . . . , V6� � �
i�1

6

P�Vi���Vi�� � P�V6�V5�P�V5�V2, V3�

P�V4�V2�P�V3�V1�P�V2�V1�P�V1� [2]

Logistic regression. Denote the gold standards by random variable
Y and the other genomic features by X1, X2, . . . , Xn. Let Y � 1
when 2 proteins interact, i.e., they are in the same complex, and
Y � 0 when the 2 proteins do not interact with each other. The
logistic model is of the form eqation (3) where the random vector
X consists of X1, X2, . . . , Xn and their interaction terms (8).

log
Pr�Y � 1�

1 � Pr�Y � 1�
� � � �X [3]

ROC curve analysis. Receiving operator characteristic (ROC) curve
is a graphical representation used to assess the discriminatory
ability of a dichotomous classifier by showing the tradeoffs
between sensitivity and specificity. Sensitivity is calculated by
dividing the number of true positives (TP) through the number
of all positives, which equals the sum of the true positives and the
false negatives (FN); specificity is calculated by dividing the
number of true negatives (TN) through the number of all
negatives, which equals the sum of the true negatives and the
false positives (FP).

Sensitivity � TP/�TP � FN�, Specificity � TN/�TN � FP� [4]

The ROC plot shows specificity on the x axis and sensitivity on
the y axis. A good classifier has its ROC curve climbing rapidly
toward upper left hand corner of the graph. This can also be
quantified by measuring the area under the curve. The closer the
area is to 1.0, the better the classifier is; and the closer the area
is to 0.5, the worse the classifier is (8).
KS analysis. Komogorov and Smirnov Statistics is a statistical
measure of the discriminations or classifications of one group
with another. If we divide the samples into 2 populations, one
good and one bad, then KS is defined as the percentage of
accumulations of good populations subtracts the percentage of
accumulated bad populations (at specific bins or intervals).

KS � �%accumulatednegativepopulations

� %accumulatedpositivepopulations� [5]

If the KS values is closer to 1, the discrimination is strong and
there is a clear way to distinguish good populations with bad
populations. If the KS value is closer to 0, there is no discrim-
ination. There is no statistical way of differentiate the good
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populations with bad ones. KS value provides a quantitative
measure of the discrimination or the performance of the clas-
sification.

SI Results. Comparison of different method.

p�o/m, g, s, p, r� �
p�p/s, o�p�s/m, g, o�p�o/m, g�p�r/m, s, o��o p�p/s, o�p�s/m, g, o�p�o/m, g�p�r/m, s, o�

[6]

We got the prediction graph as shown in Fig. S2B (4). In the
mean time, the conditional probability table is obtained. There-
fore, according to the formula (1), we can obtain the predicted
results and compare its performance with FPT. In the equation
(1), o,m,g,s,p,r separately represent variable output,mips,go,e-
s,exp,expr in the Fig. S2B.
Add new features. Fig. S3 shows the roc curve comparisons of 5
features and 13 features, and Fig. S4 a and b shows the KS value
comparisons of 5 features and 13 features. From the results we
can see that integrating 13 features performs a little better than
5 features. Fig. S5 shows the roc curve comparisons of 4 different
methods for 13 features. The results of ROC curve shows that
Bayesian network method performs badly when using 13 fea-
tures. It is probably because Bayesian network method encoun-
ters difficulties when used to create too many nodes network. In
the meantime, FPT performs a little better than logistic regres-
sion and much better than SNB in both training and testing
samples as illustrated in Fig. S5. Therefore, we further compare
KS values of FPT and logistic regression method in Fig. S4 c and
d. The KS values show that FPT does better when hit rate is
between 0.5 and 0.8 whereas logistic regression performs better
when hit rate is 	0.8. Our goal here is to predict whether there
are interactions between 2 proteins, and 0.5 should be an
appropriate cut, so FPT is a more useful approach. Finally, we
also compare their correct prediction rates when hit rate is 0.5.
Fig. S6 shows that FPT predicts more accurately. This supports
our conclusion that FPT is a better predictor among all of the
other methods included.
Protein–protein interactions in 26S proteasome complex and cytoplasmic
ribosome complex. Figs. S7 and S8 are illustrations of protein–
protein interactions predicted by mFPT. As we can see mFPT
predict more proteins than SNB for 26S proteasome complex
and cytoplasmic ribosome complex. See also Table S3 and S4.
(blue nodes represent proteins that mFPT and SNB both predict,
cyan nodes represent proteins mFPT predict while SNB do not).

For 26S proteasome complex, mFPT predicts 29 proteins
more than SNB�13 proteins, and database search tells us that
these newly predicted proteins all belong to 26S proteasome or

20S proteansome, which are associated to 26S proteansome. See
Fig. S7 and Table S3.

Among these newly predicted proteins, YDL147W,
YDR427W, YFR004W YFR010W, YGL011C, YGR232W,
YHR200W, YOR117W, YOR261C, YPR108W are regulatory
particles of 26S proteasome, YER012W, YER094C, YFR050C,
YGR135W, YJL001W, YML092C, YMR314W, YOL038W,
YOR362C, YPR103W are regulatory particles of 20S protea-
some. The proteasome is an essential component of the ATP-
dependent proteolytic pathway in eukaryotic cells and is respon-
sible for the degradation of most cellular proteins. The 20S
proteasome contains multiple peptidase activities that function
through a new type of proteolytic mechanism involving a thre-
onine active site. The 26S complex, which degrades ubiquitinated
proteins, contains in addition to the 20S proteasome a 19S
regulatory complex composed of multiple ATPases and com-
ponents necessary for binding protein substrates (9). Therefore,
20S proteasome is naturally associated with 26S complex.

For Cytoplasmic ribosome complex we can see in Table S4 and
Fig. S8, mFPT predicts 122 proteins more than SNB�98 proteins,
and in the newly predicted proteins, YDL082W, YMR142C,
YHL001W, YMR121C, YNL069C, YNL301C, YGL135W,
YBR191W, YHR010W, YDR471W, YFR032CA, YFR031CA,
YOR063W, YPL143W, YPL249CA, YBR031W are Protein
component of the large (60S) ribosomal subunit, YJL191W,
YDL083C, YDR450W, YKR057W, YLR367W, YPR132W,
YLR287CA, YPL081W are protein component of the small
(40S) ribosomal subunit. YDL130W is Ribosomal protein P1
beta. YDL208W is Nuclear protein related to mammalian high
mobility group (HMG) proteins (9).

Ribosomes are highly conserved large ribonucleoprotein
(RNP) particles, consisting in yeast of a large 60S subunit and a
small 40S subunit, that perform protein synthesis. The 60S
subunit contains 42 proteins and 3 RNA molecules. The 40S
subunit has a single 18S RNA of 1798 nt(Nucleic Length) and 32
proteins (11). These two kinds of proteins that we found all
belong to ribosome proteins.
Tables of FPT trees example and proteins in each protein–protein inter-
action complex. In Table S1.1, we listed the FPT tree examples. In
Table S1.2, we listed proteins predicted in Mitocondrial ribo-
some complex. In Table S1.3, we listed proteins predicted in 26S
complex. In Table S1.4, we listed proteins predicted in Cyto-
plasmic ribosome complex. In Table S1.5, we listed proteins
predicted in new complex with biological function of premRNA
splicing. The tables are predictions with both FPT and SNB
methods. 1 means there are interactions and 0 means there are
no interactions. The name of the proteins and the associated
biological functions are listed too.
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Fig. S1. The FP-tree in Example 1
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Fig. S2. Bayesian network graph (A), and Bayesian network graph of predicting results (B).
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Fig. S3. (a and b) Roc curve comparisons of 5 features and 13 features for training sample. (c and d) Roc curve comparisons of 5 features and 13 features for
testing sample.
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Fig. S4. (a and b)KS value comparisons of 5 (a) and 13 (b) features for training (a) and testing (b) samples. (c and d) KS value comparisons of different methods
for 13 features, respectively, for training (c) and testing (d) samples.
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Fig. S5. (a and b) Roc curve comparisons of the training samples for 4 methods for 13 features. (c and d) Roc curve comparisons of the testing samples for 4
methods for 13 features.
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Fig. S6. Comparisons of correct prediction rate for 3 methods for 13 features for both training and testing data samples.
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Fig. S7. The 26S proteasome complex.
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Fig. S8. Cytoplasmic ribosome complex.
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Table S1. The FP-treein Example 1

Tid Items bought (Ordered) frequent items

1 F, A, C, D, G, I, M F,C,A,M
2 A, B, C, F, L, M, O F,C,A,B,M
3 B, F, H, J, O F, B
4 B, C, K, S C, B
5 A, F, C, E, L, M, N F,C,A,M
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Table S2. Mitocondrial ribosome complex. MRP represents Mitochondrial ribosomal protein

Systematic name Standard name FPT SNB Discription

YDR115W YDR115W 1 1 Putative MRPL
YLR069C MEF1 1 1 Mitochondrial elongation factor
YBL090W MRP21 1 1 MRPL
YBR146W YBR146W 1 1 MRPS
YBR282W MRPL27 1 1 MRPL
YCR003W MRPL32 1 1 MRPL
YDR116C MRPL1 1 1 MRPL
YDR237W MRPL7 1 1 MRPL
YDR337W MRPS28 1 1 MRPS
YHR147C MRPL6 1 1 MRPL
YJL096W MRPL49 1 1 MRPL
YKL138C MRPL31 1 1 MRPL
YKR006C MRPL13 1 1 MRPL
YKR085C MRPL20 1 1 MRPL
YMR193W MRPL24 1 1 MRPL
YNL252C MRPL17 1 1 MRPL
YNL306W MRPL18 1 1 MRPL
YOR150W MRPL23 1 1 MRPL
YOR158W PET123 1 1 MRPS
YBR024W SCO2 1 0 Mitochondrial inner membrane protein
YBR120C CBP6 1 0 Mitochondrial translational activator
YGL143C MRF1 1 0 Mitochondrial translation release factor
YLR203C MSS51 1 0 Mitochondrial Splicing Suppressor
YOL023W IFM1 1 0 Mitochondrial translation initiation factor
YPL104W MSD1 1 0 Mitochondrial aspartyl-tRNA synthetase
YPL183WA YPL183W-A 1 0 Likely to be a MRP
YPR047W MSF1 1 0 Mitochondrial aminoacyl-tRNA Synthetase
YBL038W MRPL16 1 0 MRPL
YBR122C MRPL36 1 0 MRPL
YBR251W MRPS5 1 0 MRPS
YBR268W MRPL37 1 0 MRPL
YCR046C IMG1 1 0 MRPL
YDL045WA MRP10 1 0 MRPS
YDL202W MRPL11 1 0 MRPL
YDR322W MRPL35 1 0 MRPL
YDR347W MRP1 1 0 MRPS
YDR405W MRP20 1 0 MRPL
YDR462W MRPL28 1 0 MRPL
YGR076C MRPL25 1 0 MRPL
YGR084C MRP13 1 0 MRPS
YGR220C MRPL9 1 0 MRPL
YHL004W MRP4 1 0 MRPS
YJL063C MRPL8 1 0 MRPL
YKL167C MRP49 1 0 MRPL
YKL170W MRPL38 1 0 MRPL
YLR312WA MRPL15 1 0 MRPL
YLR439W MRPL4 1 0 MRPL
YML009C MRPL39 1 0 MRPL
YML025C YML6 1 0 MRPL
YMR024W MRPL3 1 0 MRPL
YMR225C MRPL44 1 0 MRPL
YMR257C PET111 1 0 Mitochondrial translational activator
YNL005C MRP7 1 0 MRPL
YNL137C NAM9 1 0 MRPS
YNL185C MRPL19 1 0 MRPL
YNL284C MRPL10 1 0 MRPL
YNR037C RSM19 1 0 MRPS
YPR166C MRP2 1 0 MRPS
YGL068W MNP1 0 1 Mitochondrial-Nucleoid Protein
YMR188C MRPS17 0 1 MRPS
YNL081C SWS2 0 1 Putative MRPS

MRPL, mitochondrial ribosomal protein of the large subunit; MRPS, mitochondrial ribosomal protein of the small subunit.
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Table S3. 26S complex

Systematic name Standard name FPT SNB Discription

YBL041W PRE7 1 1 20S proteasome
YDL007W RPT2 1 1 26S proteasome
YDL097C RPN6 1 1 26S proteasome
YDR394W RPT3 1 1 26S proteasome
YER021W RPN3 1 1 26S proteasome
YFR052W RPN12 1 1 26S proteasome
YGL048C RPT6 1 1 26S proteasome
YKL145W RPT1 1 1 26S proteasome
YOR259C RPT4 1 1 26S proteasome
YDL147W RPN5 1 0 26S proteasome
YDR427W RPN9 1 0 26S proteasome
YER012W PRE1 1 0 20S proteasome
YER094C PUP3 1 0 20S proteasome
YFR004W RPN11 1 0 26S proteasome
YFR010W UBP6 1 0 26S proteasome
YFR050C PRE4 1 0 20S proteasome
YGL011C SCL1 1 0 26S proteasome
YGR135W PRE9 1 0 20S proteasome
YGR232W NAS6 1 0 26S proteasome
YHR200W RPN10 1 0 26S proteasome
YJL001W PRE3 1 0 20S proteasome
YML092C PRE8 1 0 20S proteasome
YMR314W PRE5 1 0 20S proteasome
YOL038W PRE6 1 0 20S proteasome
YOR117W RPT5 1 0 26S proteasome
YOR261C RPN8 1 0 26S proteasome
YOR362C PRE10 1 0 20S proteasome
YPR103W PRE2 1 0 20S proteasome
YPR108W RPN7 1 0 26S proteasome
YDL126C CDC48 0 1 ATPase in ER
YGR253C PUP2 0 1 20S proteasome
YHR027C RPN1 0 1 26S proteasome
YIL075C RPN2 0 1 26S proteasome
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Table S4. Citoplasmic ribosome complex. RPL represents Protein component of the large (60S) ribosomal subunit. RPS represents
Protein component of the small (40S) ribosomal subunit

Systematic name Standard name FPT SNB Discription

YLR075W RPL10 1 1 RPL
YPR102C RPL11A 1 1 RPL
YGR085C RPL11B 1 1 RPL
YEL054C RPL12A 1 1 RPL
YDR418W RPL12B 1 1 RPL
YKL006W RPL14A 1 1 RPL
YLR029C RPL15A 1 1 RPL
YIL133C RPL16A 1 1 RPL
YKL180W RPL17A 1 1 RPL
YOL120C RPL18A 1 1 RPL
YBR084CA RPL19A 1 1 RPL
YBL027W RPL19B 1 1 RPL
YPL220W RPL1A 1 1 RPL
YMR242C RPL20A 1 1 RPL
YOR312C RPL20B 1 1 RPL
YPL079W RPL21B 1 1 RPL
YLR061W RPL22A 1 1 RPL
YBL087C RPL23A 1 1 RPL
YER117W RPL23B 1 1 RPL
YGL031C RPL24A 1 1 RPL
YGR148C RPL24B 1 1 RPL
YOL127W RPL25 1 1 RPL
YLR344W RPL26A 1 1 RPL
YGR034W RPL26B 1 1 RPL
YGL103W RPL28 1 1 RPL
YIL018W RPL2B 1 1 RPL
YGL030W RPL30 1 1 RPL
YDL075W RPL31A 1 1 RPL
YLR406C RPL31B 1 1 RPL
YOR234C RPL33B 1 1 RPL
YIL052C RPL34B 1 1 RPL
YDL191W RPL35A 1 1 RPL
YDL136W RPL35B 1 1 RPL
YMR194W RPL36A 1 1 RPL
YLR185W RPL37A 1 1 RPL
YDR500C RPL37B 1 1 RPL
YLR325C RPL38 1 1 RPL
YIL148W RPL40A 1 1 RPL
YKR094C RPL40B 1 1 RPL
YNL162W RPL42A 1 1 RPL
YHR141C RPL42B 1 1 RPL
YJR094WA RPL43B 1 1 RPL
YDR012W RPL4B 1 1 RPL
YPL131W RPL5 1 1 RPL
YML073C RPL6A 1 1 RPL
YLR448W RPL6B 1 1 RPL
YGL076C RPL7A 1 1 RPL
YHL033C RPL8A 1 1 RPL
YLL045C RPL8B 1 1 RPL
YGL147C RPL9A 1 1 RPL
YNL067W RPL9B 1 1 RPL
YDL081C RPP1A 1 1 Ribosomal Protein P1 Alpha
YOL039W RPP2A 1 1 Ribosomal Protein P2 Alpha
YDR382W RPP2B 1 1 Ribosomal Protein P2 Beta
YGR214W RPS0A 1 1 RPS
YLR048W RPS0B 1 1 RPS
YOR293W RPS10A 1 1 RPS
YMR230W RPS10B 1 1 RPS
YDR025W RPS11A 1 1 RPS
YBR048W RPS11B 1 1 RPS
YOR369C RPS12 1 1 RPS
YDR064W RPS13 1 1 RPS
YCR031C RPS14A 1 1 RPS
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Systematic name Standard name FPT SNB Discription

YOL040C RPS15 1 1 RPS
YML024W RPS17A 1 1 RPS
YDR447C RPS17B 1 1 RPS
YML026C RPS18B 1 1 RPS
YOL121C RPS19A 1 1 RPS
YNL302C RPS19B 1 1 RPS
YLR441C RPS1A 1 1 RPS
YML063W RPS1B 1 1 RPS
YGL123W RPS2 1 1 RPS
YHL015W RPS20 1 1 RPS
YJL190C RPS22A 1 1 RPS
YGR118W RPS23A 1 1 RPS
YIL069C RPS24B 1 1 RPS
YGR027C RPS25A 1 1 RPS
YLR333C RPS25B 1 1 RPS
YER131W RPS26B 1 1 RPS
YKL156W RPS27A 1 1 RPS
YOR167C RPS28A 1 1 RPS
YLR264W RPS28B 1 1 RPS
YLR388W RPS29A 1 1 RPS
YDL061C RPS29B 1 1 RPS
YNL178W RPS3 1 1 RPS
YLR167W RPS31 1 1 RPS
YJR145C RPS4A 1 1 RPS
YHR203C RPS4B 1 1 RPS
YJR123W RPS5 1 1 RPS
YPL090C RPS6A 1 1 RPS
YBR181C RPS6B 1 1 RPS
YOR096W RPS7A 1 1 RPS
YNL096C RPS7B 1 1 RPS
YBL072C RPS8A 1 1 RPS
YER102W RPS8B 1 1 RPS
YBR189W RPS9B 1 1 RPS
YDL208W NHP2 1 0 rRNA processing
YDL082W RPL13A 1 0 RPL
YMR142C RPL13B 1 0 RPL
YHL001W RPL14B 1 0 RPL
YMR121C RPL15B 1 0 RPL
YNL069C RPL16B 1 0 RPL
YNL301C RPL18B 1 0 RPL
YGL135W RPL1B 1 0 RPL
YBR191W RPL21A 1 0 RPL
YHR010W RPL27A 1 0 RPL
YDR471W RPL27B 1 0 RPL
YFR032CA RPL29 1 0 RPL
YFR031CA RPL2A 1 0 RPL
YOR063W RPL3 1 0 RPL
YPL143W RPL33A 1 0 RPL
YPL249CA RPL36B 1 0 RPL
YBR031W RPL4A 1 0 RPL
YDL130W RPP1B 1 0 Ribosomal Protein P1 Beta
YJL191W RPS14B 1 0 RPS
YDL083C RPS16B 1 0 RPS
YDR450W RPS18A 1 0 RPS
YKR057W RPS21A 1 0 RPS
YLR367W RPS22B 1 0 RPS
YPR132W RPS23B 1 0 RPS
YLR287CA RPS30A 1 0 RPS
YPL081W RPS9A 1 0 RPS
YHR010W RPL27A 0 1 RPL
YLR340W RPP0 0 1 ribosomal protein P0
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Table S5. New complex

Systematic name Standard name FPT SNB Discription

YLR298C YHC1 1 0 U1 snRNP
YGR013W SNU71 1 0 U1 snRNP
YIL061C SNP1 1 0 U1 snRNP
YDR240C SNU56 1 0 U1 snRNP
YBL074C AAR2 1 0 U5 snRNP
YER029C SMB1 1 0 Sm B
YGR074W SMD1 1 0 Sm D1
YLR275W SMD2 1 0 Sm D2
YLR147C SMD3 1 0 Sm D3
YOR159C SME1 1 0 Sm E
YPR182W SMX3 1 0 Sm F
YMR213W CEF1 1 0 splicing factor
YLR117C CLF1 1 0 splicesome assembly factor
YKL173W SNU114 1 0 U5 snRNP
YMR125W STO1 1 0 nuclear mRNA degradation
YBL026W LSM2 1 0 Sm-like protein
YER112W LSM4 1 0 Sm-like
YBR055C PRP6 1 0 pre-mRNA processing
YDL030W PRP9 1 0 pre-mRNA processing
YDL043C PRP11 1 0 pre-mRNA processing
YMR268C PRP24 1 0 pre-mRNA processing
YDR473C PRP3 1 0 pre-mRNA processing
YPR178W PRP4 1 0 pre-mRNA processing
YML046W PRP39 1 0 pre-mRNA processing
YDR243C PRP28 1 0 Pre-mRNA Processing
YGL120C PRP43 1 0 Pre-mRNA Processing
YGR006W PRP18 1 0 Pre-mRNA Processing
YGR075C PRP38 1 0 Pre-mRNA Processing
YGR091W PRP31 1 0 Pre-mRNA Processing
YHR165C PRP8 1 0 Pre-mRNA Processing
YJL203W PRP21 1 0 Pre-mRNA Processing
YKL012W PRP40 1 0 Pre-mRNA Processing
YLL036C PRP19 1 0 Pre-mRNA Processing
YDR235W PRP42 1 0 U1 snRNP
YML049C RSE1 1 0 pre-mRNA splicing
YMR240C CUS1 1 0 U2 snRNP
YHR086W NAM8 1 0 U1 snRNP
YDR088C SLU7 1 0 RNA splicing factor
YPR057W BRR1 1 0 pre-mRNA splicing
YBR119W MUD1 1 0 U1 snRNP
YOR319W HSH49 1 0 U2-snRNP
YIR009W MSL1 1 0 U2 snRNP
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