Supporting Information

Mazurek et al. 10.1073/pnas.0808572106

A

DN A C

<

gct	tag	gat	cat	cga	gga	t	W	М	X	gc	tcg	gtg	caa	ttc	agc	gg
cga	atc	cta	gta	gct	cct	а	Z	Мʻ	Y	cg	agc	cac	gtt	aag	tcg	CC

B

	1	2	3	4	5	6	7	8	9	10
	g C	t a	t a	W Z	M M	X Y Y	g C	a t	c g	g c
9	20	19	18	17	16	15	14	13	12	11

Fig. S1. Mismatched duplex DNA substrates. The representative 41-mer G/T mismatched DNA substrate used for the ATPase and TIR experiments (*A*) and 10-mer G/T mismatched DNA duplex used for thermal denaturation and NMR analysis (*B*) are shown. The position of mismatch and nearest neighbor flanking sequence are shown (*W*, *X*, *Y*, and *Z* positions). This resulted in 16 different nearest-neighbor sequence contexts for each mismatch. For DNA substrates examined by TIR, thermal denaturation, and NMR the nearest neighbors flanking the mismatched bases in the $2 \times 3'$ -purine sequence context, where W is cytosine, X is adenine, Y is thymine, and Z is guanine, and in the $2 \times 3''$ -pyrimidine sequence context, where W is adenine, X is cytosine, Y is guanine, and Z is thymine.

Fig. S2. The effect of nearest-neighbor sequence context on the K_m of the mismatch-dependent hMSH2-hMSH6 ATPase. The red bar corresponds to the average K_m of the 2 × 3'-purine sequence context; the green bar corresponds to the average K_m of the 1 × 3'-purine plus 1 × 3'-pyrimidine sequence context; the blue bar corresponds to the average K_m of the 2 × 3'-purine plus 1 × 3'-pyrimidine sequence context; the blue bar corresponds to the average K_m of the 2 × 3'-pyrimidine sequence context. Gray box indicates K_m (± standard deviation) by a homoduplex DNA containing an A/T or G/C base pair at the mismatch site and generally indicates the background of end-activation due to the use of linear open-ended oligonucleotides.

Fig. S3. ¹H NMR NOESY ($T_m = 250$ ms) spectra of the base proton-H1' region for G/T and G/A mismatched duplexes in CxA and AxC sequence context. G/T mismatch in the CxA sequence context is shown. The base-H1' sugar connectivity is marked by lines (top strand, green; bottom strand, red). Stars indicate broken or weak NOE.

Fig. 54. ¹H NMR NOESY ($T_m = 250$ ms) spectra of the base proton-H1' region for G/T and G/A mismatched duplexes in CxA and AxC sequence context. GT mismatch in the AxC sequence context is shown. The base-H1' sugar connectivity is marked by lines (top strand, green; bottom strand, red). Stars indicate broken or weak NOE.

Fig. S5. ¹H NMR NOESY (*T*_m = 250 ms) spectra of the base proton–H1' region for G/T and G/A mismatched duplexes in CxA and AxC sequence context. G/T mismatch in the CxA sequence context is shown. The base-H1' sugar connectivity is marked by lines (top strand, green; bottom strand, red). Stars indicate brokenor weak NOE.

Fig. S6. ¹H NMR NOESY (*T_m* = 250 ms) spectra of the base proton–H1' region for G/T and G/A mismatched duplexes in CxA and AxC sequence context. G/T mismatch in the CxA sequence context is shown. The base-H1' sugar connectivity is marked by lines (top strand, green; bottom strand, red). Stars indicate brokenor weak NOE.

Other Supporting Information Files

Table S1 (PDF) Table S2 (PDF) Table S3 (PDF) Table S4 (PDF) Table S5 (PDF) Table S6 (PDF)