Supporting Information

Yi et al. 10.1073/pnas.0812432106

Fig. S1. Disruption of GDP-fucose de novo pathway and complementation with salvage pathway. Lane 1. LPS from wild-type *E. coli* O86; lane 2. Disruption of de novo pathway (gmd-fcl); lane 3. complementation of de novo pathway with pTRC99A-f; lane 4. complemented with salvage pathway (pET15b-fkp), grown in LB without sugar supplement; lane 5. complemented with salvage pathway (pET15b-fkp), grown in LB supplemented with 0.1% glucose; lane 6. complemented with salvage pathway (pET15b-fkp), grown in LB supplemented with 0.1% glucose; lane 6. complemented with salvage pathway (pET15b-fkp), grown in LB supplemented with 0.1% glucose; lane 6. complemented with 0.1% glucose.

Fig. S2. Expression and purification of Fkp. Lane 1. Protein Standard; Iane 2. Proteins in whole cell of Fkp-expressing BL21(DE3); Iane 3. Soluble protein fractions; Iane 4. Inclusion body; Iane 5. Flow-through from Ni-affinity purification; Iane 6. Eluted Fkp from Ni-affinity purification.

N A N

Fig. S3. In vitro Fkp reaction with fucose as substrate. Lane 1. ATP; lane 2. GTP; lane 3. L-fucose; lane 4. GDP-fucose; lane 5. ADP; lane 6. starting point of GDP-fucose synthesis reaction; lane 7. GDP-fucose synthesis reaction after 30 min.

DNAS

A. Fucose, compound 1, product MS (ESI): 588.2

SANG SAL

C. compound **3**, product MS (ESI): 604.2

PNAS PNAS

D. compound 4, product MS (ESI): 629.1

E. compound 5, product MS (ESI): 603.2

DNAS

S A ZO

F. compound 6, product MS (ESI): 602.1

G. compound 7, product MS (ESI): 618.2

DN AS

S A No

H. compound 8, product MS (ESI): 616.1

I. compound 9, product MS (ESI): 602.3

DNAS

S A No

J. compound 10, product MS (ESI): 598.2

A. MS spectrum of LPS (compound 1).

Fig. S5. MS spectra of intact LPSs.

Fig. S5. (continued).

B. MS spectrum of LPS (3)

C. MS spectrum of LPS (2)

E. MS spectrum of LPS (5)

S A Z C

Fig. S5. (continued).

F. MS spectrum of LPS (6)

SANG SANG

G. MS spectrum of LPS (7)

LAS PNAS

Fig. S5. (continued).

H. MS spectrum of LPS (8)

Fig. S5. (continued).

I. MS spectrum of LPS (9)

J. MS spectrum of LPS (10)

Fig. S5. (continued).

Fig. S6. Analysis of LPSs fed with different fucose analogs. Chemical structures of compounds are shown.

A. compound 5

PNAS

PNAS PNAS

B. compound 6

AS PNAS

Fig. S7. (continued).

C. compound 7

SANG SAL

D. compound 10

DNAS

+ Prec (204.20): 4.380 to 4.948 min from Sample 1 (Wang Alkyne; DP 400, pre@204) of IJLXL080825A11.wiff (Turbo Silareay) 474.0

Fig. S7. (continued).

Fig. S8. Control experiments for in vitro polysaccharide labeling.

Other Supporting Information Files

SI Appendix

IAS PNAS