Supporting Information

Erat et al. 10.1073/pnas.0812516106

Fig. S1. NMR titrations of collagen peptides to fibronectin fragments. (A, C, E, G, I, and K) ¹⁵N-HSQC spectra of the indicated fibronectin fragment at 0.1 mM concentration in PBS, 25 °C (8 -9FnI) or 20 mM NaPi (pH 7.2), 37 °C (6 FnI¹⁻²FnII⁷FnI). Free-protein spectra are shown in red, and spectra in excess of collagen peptide are shown in green. The different peptides used are shown as colored bars (see Fig. 1 in the main manuscript) and the $\alpha_1(I)$ (A-H) or $\alpha_2(I)$ (I-L) residue span is provided. (B, D, H, F, L, and J) Plots of combined ¹H and ¹⁵N chemical shift perturbations (B, D, H, J) or free resonance intensities (F and L) versus peptide concentration for the different NMR titrations. These data were fit to extract equilibrium dissociation parameters assuming a single binding event. The fits are shown as red lines.

Fig. 52. Fluorescent anisotropy titrations of $\alpha_1(l)$ collagen peptides and fibronectin fragments. Shown here is fluorescent polarization of 75 nM 5-carboxy-fluorescein-labeled peptides [colored bars and $\alpha_1(l)$ residue span] in 150 mM NaCl, 20 mM Tris-Cl buffer (pH 7.4) (TBS), 25 °C versus concentration of the indicated fibronectin fragments. Error bars correspond to 1 standard deviation from 5 sequential anisotropy readouts. Data were fit assuming a single binding event to extract equilibrium parameters. (*A*, *D*) ^{8–9}Fnl and GBD display the same affinity towards $a_1(l)$ peptide 774–798, indicating lack of cooperative peptide binding by the GBD sub-fragments. $\alpha_1(l)$ peptide 767–798 (B, *E* and *F*) is N-terminally elongated compared with *D*, and displays evidence of two binding events with GBD. Fitting of the initial 7 points in that titration (*F*) yields a K_d value for the first binding event comparable to that of GBD with $\alpha_1(l)$ peptide 774–798 (*D*). Titration of peptide 767–798 with ^{8–9}Fnl (*B*) does not produce a similar pattern; thus, this effect may be caused by weaker ⁶Fnl^{1–2}Fnll⁷Fnl interactions to the N-terminal extension. (*C*) Titrations with a C-terminaly truncated peptide and ^{8–9}Fnl show little effect on affinity.

Fig. S3. Binding of $\alpha_1(I)$ collagen peptide to GBD. Shown here are ¹⁵N-HSQC spectra of ^{8–9}FnI (*A*), GBD (*B*), and ⁶FnI^{1–2}FnII⁷FnI (*C*) in the absence (red) or the presence (green) of a 3-fold excess $\alpha_1(I)$ peptide 778–799. The ^{8–9}FnI and ⁶FnI^{1–2}FnII⁷FnI spectra correspond to those in Fig. S1. GBD spectra were acquired in PBS at 37 °C with a 2× excess of peptide for the bound state. GBD resonances perturbed upon binding can be correlated to similar resonances in ^{8–9}FnI and ⁶FnI^{1–2}FnII⁷FnI spectra and are connected by vertical lines. A number of ^{8–9}FnI resonances are absent in the free GBD, likely because of chemical exchange, but appear at frequencies corresponding to the bound state in the presence of peptide.

Wavelength (nm)

Fig. S4. Circular dichroism spectrum of isolated $\alpha_1(I)$ G₇₇₈–G₇₉₉ peptide. Shown here are far-UV circular dichroism spectra from a 50 μ M sample of $\alpha_1(I)$ G₇₇₈–G₇₉₉ (solid red line) and a 20 μ M sample of the all β -strand FN ²FnIII domain (dashed blue line) (1) in a 150 mM NaCl, 20 mM Na₂HPO₄ (pH 7.2) buffer. The peptide spectrum is substantially different from that of the all- β protein used as reference, having a positive maximum at 218 nm. Such maxima are typically associated with random coil compounds (2), however they are also consistent with polyproline II conformations depending on the amino acid sequence (3).

- 1. Vakonakis I, Staunton D, Rooney LM, Campbell ID (2007) Interdomain association in fibronectin: Insight into cryptic sites and fibrillogenesis. EMBO J 26:2575-2583.
- 2. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. *Biochemistry* 8:4108–4116.
- 3. Darnell G, Orgel JP, Pahl R, Meredith SC (2007) Flanking polyproline sequences inhibit beta-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J Mol Biol 374:688–704.

Fig. S5. The different protein–peptide interfaces present in the $^{8-9}$ Fnl/ α_1 (I) peptide crystal. The protein is shown in gold and the peptide in blue in 2 orientations. (A) The main antiparallel β -strand addition interface described (total area 725 Å²). (B) The peptide β -strand contacts $^{8-9}$ Fnl strand C in perpendicular orientation, whereas the peptide C terminus contacts the $^{8-9}$ Fnl B/C loop and strand D (total area 430 Å², 30% due to peptide C terminus). (C) The peptide C terminus contacts 9 Fnl strand E in antiparallel orientation (total area 435 Å², 80% due to peptide C terminus).

Fig. S6. NMR titrations of short $\alpha_1(l)$ peptides. Shown are plots of combined ¹H and ¹⁵N chemical shift perturbations versus peptide concentration for NMR titrations of the wild-type core sequence (*A*), sequences bearing single amino acid substitutions (*B* and *C*), or a putative FN-binding sequence identified from analysis of the structure (*D*). Samples were 150 μ M ¹⁵N ^{8–9}FnI in PBS buffer at 37 °C and indicated peptide concentration. Even conservative substitutions, shown in bold, on positions 2 (*B*) or 9 (C) cause significant changes in the observed affinities.

Fig. S7. NMR titrations of alternative α_1 (I)-binding sites. ¹⁵N-HSQC spectra of ^{8–9}Fnl at 0.15 mM concentration in PBS, 25 °C (red) overlaid with spectra in complex with 0.6 mM peptide. Peptides used correspond to either the core binding sequence derived from the collagenase site of α_1 (I), GLPGQRGERG(Y), or putative binding sites identified from the amino acid sequence. As seen, the degree of resonance perturbations varies indicating different binding affinities over these peptides.

Table S1. K_{ds} of $\alpha_1(I)$ peptides and Fn fragments

PNAS PNAS

Sequence	^{8–9} FnI	⁶ Fnl ^{1–2} Fnll ⁷ Fnl	GBD, μ M	
$\alpha_1(I)$ peptide sequence			ND	
GLGGNFAPQLSYGYDEKSTGGISVPGPM-Y	_†	_\$	ND	
G ₇₆₃ PAGAOGTOGPQGIAG ₇₇₈ -Y	_†	$2.8\pm0.2~\text{mM}^{\$}$	ND	
G778QRGVVGLOGQRGERGFOGLOG799-Y	5 \pm 1 μ M ⁺	57 \pm 6 μ M	ND	
G ₇₉₆ LOGPSGEOGKQGPSGASGER ₈₁₆ -Y	$1.4 \pm 0.12 \text{ mM}^+$	_\$,¶	ND	
G ₇₈₄ LOGQRGERG ₇₉₃ -Y	$0.4\pm0.03~mM^{\ddagger}$	ND	ND	
G ₇₈₄ FOGQRGERG ₇₉₃ -Y	$0.9\pm0.10~\text{mM}^{\ddagger}$	ND	ND	
G ₇₈₄ LOGQRGEKG ₇₉₃ -Y	$1.1 \pm 0.17 \text{ mM}^{\ddagger}$	ND	ND	
G ₇₈₄ FOGQRGEKG ₇₉₃ -Y	= #¶	ND	ND	
G ₈₂ LOGMKGHRG ₉₁ -Y	$0.4\pm0.40~\text{mM}^{\pm}$	ND	ND	
G ₉₁ FSGLDGAKG ₁₀₀ -Y	= #¶	ND	ND	
G ₉₄ LDGAKGDAG ₁₀₃ -Y	= #¶	ND	ND	
*-Q774GIAGQRGVVGLOGQRGERGFOGLO798	$4.2\pm0.8~\mu{ m M}$	ND	4.9 ± 0.6	
*-A767 OGTOGPQGIAGQRGVVGLOGQRGERGFOGLO798	$5.3\pm0.7~\mu{ m M}$	ND	4.0 ± 2.5	
*-Q774GIAGQRGVVGLOGQRGER792	$7.3\pm0.7~\mu{ m M}$	ND	ND	
$\alpha_2(I)$ peptide sequence				
G ₇₈₈ AOGILGLOGSRGERGLOGVAG ₇₉₉ -Y	8 \pm 2 μ M ⁺	$3\pm0.8~\text{mM}^{\$}$	ND	

* denotes N-terminal 5-carboxyfluorescein-labeled peptides, affinities for which were determined by fluorescence polarization in 150 mM NaCl, 20 mM Tris-Cl buffer (pH 7.4) (TBS) at 25 °C. Residues involved in amino acid substitutions compared with the wild-type G₇₈₄–G₇₉₃ sequence are shown in bold type. ND, not determined.

[†]Affinities for unlabeled peptides were determined by NMR in PBS buffer at 25 °C.

[‡]Affinities for unlabeled peptides were determined by NMR in PBS buffer at 37 °C.

[§]Affinities for unlabeled peptides were determined by NMR in 20 mM sodium phosphate (pH 7.2) at 37 °C.

[¶]Very small resonance perturbations were observed; however, they are insufficient to accurately determine affinity.

^ITwo binding events are evident for $\alpha_1(I)$ peptide 767–798 and GBD; shown is the value of the strongest binding.

Table S2. Crystallographic dataset statistics and model refinement

PNAS PNAS

Data collection		
Cell parameters	a = b = 56.84 Å, c = 150.22 Å	
	$lpha=eta=$ 90°, $\gamma=$ 120°	
Wavelength, Å	0.9796	
Resolution, Å	50.06-2.00 (2.10-2.00)	
Unique reflections	19,940	
R _{merge}	0.065 (0.571)	
Completeness, %	100.0 (100.0)	
Multiplicity	6.9 (7.1)	
l/σ(l)	18.1 (3.1)	
Refinement statistics		
Resolution, Å	49.23–2.10	
Unique reflections	17126	
Working set	15,897 (92.8%)	
Free set	1,229 (7.2%)	
R _{work}	0.2090	
R _{free}	0.2424	
Overall mean <i>B</i> values, Å ²	52.4	
No. of amino acid residues per asymmetric unit (protein and ligand)	224	
No of water molecules	105	
Matthews coefficient	2.63 (water content, 53.34%)	
RMSD from ideal values		
Bonds, Å/angles, °	0.008/1.297	
Estimated overall coordinate error based on maximum likelihood, Å	0.33	
Estimated phase error based on maximum likelihood, $^{\circ}$	24.18	
Ramachandran plot statistics		
Residues in favored regions, %	94.5	
Residues in allowed regions, %	5.5	
Residues in disallowed regions, %	0.0	

Table S3. Putative ^{8-9}Fnl binding sites on α_1 and α_2 chains of type-I collagen

 α_1 chain residues

PNAS PNAS

(UniProt-KB/Swiss-Prot: P02452)			
82–90*	GLP	GMK	GHR
91–99	GFS	GLD	GAK
94–102	GLD	GAK	GDA
166–174	GFP	GAV	GAK
316–324	GFP	GAD	GVA
355–363	GLP	GAK	GLT
502–510	GFP	GER	GVQ
697–705	GFP	GAA	GRV
775–783	GIA	GQR	GVV
784–792*	GLP	GQR	GER
928–936	GIK	GHR	GFS
α_2 chain residues			
(UniProt-KB/Swiss-Prot: P02452)			
82–90*	GLP	GFK	GIR
85–93	GFK	GIR	GHN
88–96	GIR	GHN	GLD
127–135	GLP	GER	GRV
214–222	GLT	GAK	GAA
316–324	GLP	GAD	GRA
448–456	GVQ	GGK	GEQ
535–543	GVV	GAV	GTA
550–558	GLP	GER	GAA
559–567	GIP	GGK	GEK
697–705	GFP	GAA	GRT
784–792*	GLP	GSR	GER
793–801	GLP	GVA	GAV
928–936	GLP	GLK	GHN
931–939	GLK	GHN	GLQ
940–948	GLP	GIA	GHH
943–951	GIA	GHH	GDQ

Asterisks denote predicted high-affinity sites for ^{8–9}FnI.

Sequence