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SI Text

Molecular Dynamics Simulations with Explicit Solvent. MD simula-
tions were performed with TIP3P explicit solvent on DSOC-NP
and K99C-NP. Internal water molecules in the crystal were kept
in the structure. The NP-cyt ¢ conjugate was centered in a sphere
containing water molecules (80 A in diameter). Water molecules
whose oxygen atom is closer to the heavy atom by <2.8 A were
deleted. The deformable boundary potential for this sphere was
obtained from the MMTSB server (1, 2). Outside of the sphere,
water molecules were subjected to Langevin dynamics with a
friction coefficient of 5 ps~!. After solvation, there were 6,907
water molecules for the D50C-NP system and 6,944 water
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molecules for the K99C-NP system. Each BPS molecule was
carrying a charge of —4e. A 12-A cutoff was applied for
nonbonded interactions with a switch function between 8 A and
12 A. Molecules within 13 A were included in the nonbonded list.
After energy minimization, the system was heated from 48 K to
450 K for 80 ps with C, atoms harmonically constrained. It was
then equilibrated at 450 K for 100 ps. Leap-frog dynamics
trajectories were carried out with 2-fs time steps for 4.5 ns and
the SHAKE algorithm was used to constrain bonds involving
hydrogen atoms. The list of nonbonded interaction pairs was
updated every 5 steps.
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potentials of heme proteins. / Am Chem Soc 120:13383-13388.
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Fig. S1. Soret (a) and Q-band (b) absorption of conjugates with and without 0.1 M NaCl. NP contribution to the spectra has been subtracted. For easier
comparison between spectra, the data have been normalized to absorption at 410 nm (a) and 526 nm (b), which have a molar extinction coefficient independent
of the heme oxidation state. When cyt c unfolds, it is known that its redox potential decreases, thus the heme is more readily oxidized (3, 4). Here, the heme
is partially reduced in several conjugates (D50C-NP and E66C-NP without salt and all conjugates with 0.1 M NacCl), indicating retained protein redox activity

because it can still exchange electrons.

T T T T

T T T T
520 530 540 550

wavelength (nm)

Aubin-Tam et al.Jwww.pnas.org/cgi/content/short/080729910¢



http://www.pnas.org/cgi/content/short/0807299106

Lo L

P

1\

=y

— 300K 450K ===-- 300K with 4- charge

o

—_

e

o

rllI|IIIIIIIII|IIIIIIIII|IIIIIIIII TTTTTTTTT IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIII—[II|IIII TT1 |III

()]

-

O

()]

ot

- rlll|IIIIIIIII|III‘IIIIII|IIIIIIIIIIIIIIIIII|IIIIIIIII‘|-II‘I-IIIIII|IIIIIIIII|IIIIIIIII|IIIIIIII|IIIIIIIII|III
((b]

a1+ = ;

2 ‘J-\ |

S0+ = \

._': |IIIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|III
O 1 -

- r—‘ [
-Co

2_ rlll|IIIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|III
(U1

a) m ]

(@) - ! b 1

© ‘ y '
LO l - . '
g T

©

—_

on BPS

WTcyt ¢

NP at H39C

NP at D50C

NP at E6G6C

NP at K99C

NP at C102

ero'rwwmIIIIIIIIIIIIIIIIIIIIIII]IIIIIIIIIIIIIIIHTTTIIIIHIII IIIllIIII]IIIIIIIII]IIIIIIIT
10 20 30 40 50 60 70 80 90 100

residue #

Fig. S2. Comparison of a-helicity. Secondary structure is determined by using STRIDE (5) and averaged over the last 500 ps of simulations at 300 K, at 450 K
with normal charges on BPS, and at 300 K with the charges of BPS molecules increased from —2e to —e. Arrows: NP labeling sites. While the short 70’s helix is

not recognized by STRIDE in the WT at 300 K, its presence is confirmed by the H bond between P71 and 175 (see Fig. S3).
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Fig. S3. H bond between P71 and 175 in 70's helix of WT without NP. The distance between the O of P71 and the H of 175 is plotted along the MD trajectory
at 300 K (black) and 450 K (gray).
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Fig.S4. rmsd profile of C, of N-terminal (a), 60’s (b), and C-terminal (c) a-helices of conjugates, from the energy minimized WT crystal structure at 300 K (blue),
at 450 K (red), and at 300 K with charges enhanced on BPS (black).
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Fig. S5. Solvent-accessible surface area (ASA) of the side chains of Leu-9, Phe-10, Leu-94, Tyr-97, and Leu-98, which are part of the hydrophobic cluster of the

N-C foldon. ASA profiles are calculated by using a probe sphere with a radius of 1.4 A. (a) At 300 K, (b) at 450 K, and (c) at 300 K with charges enhanced on BPS.
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Fig. S6. Contact map of H39C-NP (a), E66C-NP (b), and C102-NP (c). The distance between C, atoms (red, WT; blue, NP conjugate) is averaged over the last 500
ps of simulation at 450 K.
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Fig. S7. Snapshot of protein structure at the end of 4.5-ns MD simulations at 450 K with explicit solvent and double charges on BPS. Green/blue, N-/C-terminal
helices; red, loss of >50% a-helicity from WT structure; purple sphere, NP attachment site. The program VMD was used for visualization (6). See also Fig. 4.
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Fig. S8. Comparison of a-helicity for explicit solvent simulations. Secondary structure is determined by using STRIDE (5) and averaged over the last 500 ps of

simulations. Arrows: NP labeling sites.
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Fig.S9. Trajectory analysis of explicit water simulations. (a) rmsd profile of C, of N-terminal, 60’s and C-terminal a-helices of conjugates from energy minimized
WT crystal structure. (b) ASA profile of the side chains of Leu-9, Phe-10, Leu-94, Tyr-97, and Leu-98 for explicit solvent simulations of D50C-NP (blue) and K99C-NP
(red).
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Fig. $10. Protein-NP conjugate in an 80-A-diameter TIP3P water sphere.
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