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Artificial Neural Network. To estimate the pattern recognition
capacity of Purkinje cells, we developed an artificial neural
network representing a Purkinje cell in the cerebellar cortex
(P-ANN). The P-ANN incorporated our empirically determined
response variability and pattern size from experiments done in
acutely prepared rat cerebellar slices as well as the linear
algorithm. The connectivity and learning rule of the P-ANN
used here were modeled after a commonly used Purkinje cell
artificial neural network (1, 2) and simulated a Purkinje cell
receiving 150,000 independent parallel fiber inputs.

Design of the P-ANN. The P-ANN was made of 2 components. The
first was an ANN that grouped parallel fibers into patterns and
determined the consequence of learning on the strength of each
pattern. This aspect of the ANN was virtually identical to that of
Steuber et al. (2), but our ANN incorporated the linear firing
rate algorithm instead of pauses. The second component incor-
porated the response variability of Purkinje cells to the repeated
activation of different parallel fiber input patterns of comparable
strength which was experimentally determined in acutely pre-
pared rat cerebellar slices (Fig. 1D of the main text). In essence,
in our P-ANN the parameters obtained experimentally from real
Purkinje cells in slices replaced the parameters obtained from
the in silico biophysical model of a Purkinje cell in the simula-
tions of Steuber et al. (2).

The output of the ANN used here was a linear function of the
strength of its input (3). With asynchronous parallel fiber input
and intact inhibition, 650 novel inputs increased the firing rate
by 200 spikes per second. Under these conditions, learned
patterns were generated by randomly selecting 650 inputs from
the entire pool of 150,000 parallel fibers and decreasing the
strength of all inputs constituting the pattern by 50% to mimic
long-term depression (LTD) of the parallel fiber-to-Purkinje cell
synapse (4–6). Furthermore, the novel patterns were also ran-
domly selected from the entire pool of 150,000 parallel inputs
and could thus include inputs that as a consequence of learning
had undergone LTD.

Estimating Pattern Recognition Capacity. We used this P-ANN to
evaluate the capacity of a Purkinje cell in pattern recognition by
altering the number of patterns it had to learn and quantifying
its ability to distinguish between learned and a similar number
of novel patterns. We assessed the resulting pattern recognition
capacity by calculating the signal-to-noise ratio (s/n) of the
maximum firing rate of a Purkinje cell in response to learned
patterns as compared to novel ones using:

s/n �
2�� l � �n�2

� l
2 � �n

2

where �l and �n and are the means and �l and �n are the standard
deviations of the learned and novel maximum firing rate distri-
butions (2, 7, 8).

Whereas in the absence of learning, each pattern increased the
firing of a Purkinje cell by 200 spikes per second, given the
learning rule described above, after learning, the strengths of all
learned patterns were reduced to that which increased the firing
rate by 100 spikes per second. If one assumes that the sponta-
neous baseline firing rate of a Purkinje cell before presentation
of a pattern is 50 spikes per second, then presentation of every
learned pattern should increase the firing rate of a Purkinje cell

to 150 spikes per second (Fig. S1 A and C). However, because of
the inherent variability in the response of a Purkinje cell to the
repeated presentation of the same stimulus strength, the actual
distribution of Purkinje cell firing rates in response to learned
patterns was a Gaussian with a mean, �l, of 150 spikes per second
and as determined from the experiments shown in Fig. 1D of the
main text an experimentally determined standard deviation, �l,
of �17 spikes per second (see Fig. S1 B and D, blue).

Before learning, the Purkinje cell maximum firing rate distri-
bution resulting from the activation of novel patterns was also
Gaussian. However, in contrast to the distribution of learned
patterns, the mean and the standard deviation of the distribution
of the response of Purkinje cells to novel patterns were both a
function of the number of patterns to be learned (Fig. S1 A and
C, red). For instance, the mean maximum firing rate of the novel
distribution, �n, was inversely correlated to the number of
patterns learned. This is because the larger the number of
learned patterns, the higher the probability that some of the
depressed inputs from learned patterns will also be included in
novel patterns. Thus, the larger the number of patterns to be
learned, the smaller the differences between the means of the
novel and learned distributions (Fig. S1 A and C).

As shown in Fig. S1 B and D (purple), in the P-ANN the
standard deviation of the distribution of the response of Purkinje
cells to novel patterns, �n, was the algebraic sum of a term that
represented the impact of the inclusion of depressed inputs in
novel patterns from the ANN (Fig. S1 A and C, red) and the
experimentally determined inherent response variability of �26
spikes per second for Purkinje cells at 250 spikes per second. This
first term was obtained from the ANN simulation and increased
with increasing the number of patterns to be learned. As the
number of patterns to be learned was increased, a decrease in the
mean and a concurrent increase in the standard deviation of the
novel distribution maximum firing rates were combined to
decrease the s/n (Fig. S1 B and D).

The P-ANN simulation was computed for different numbers
of parallel fibers forming a pattern. Each pattern size corre-
sponded to its specific set of experimental conditions.

Adaptation of the ANN to Estimate Pattern Recognition Capacity
When Information Is Encoded as Pauses. We also examined the
pattern recognition capacity of a Purkinje cell, assuming that it
uses pauses to encode information instead of firing rate. We used
the same ANN and approach of incorporating experimental
variability in determining the s/n. We restricted a thorough
analysis to synchronous inputs because, with asynchronous in-
puts, it was not possible to get a burst–pause response with
inhibition intact. After block of inhibitory synaptic transmission
it was possible to get burst–pause responses, although under
these conditions the pauses were so short and had such a
relatively large coefficient of variation that when their variability
was incorporated into our P-ANN, the pattern recognition
capacity was marginal.

To adapt our P-ANN to estimate pattern recognition capacity
of Purkinje cells if they encode information as pauses, we first
estimated the number of inputs that form a pattern. A burst–
pause response in Purkinje cells is generated when the strength
of the parallel fiber input is beyond that which increases the
maximum firing rate to �250 spikes per second. With synchro-
nous inputs and with inhibition blocked, we estimate that release
of neurotransmitter from a minimum of 100 parallel fibers is
needed to produce a burst–pause response. However, because
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100 parallel fibers represent the minimum synaptic strength that
produces a burst–pause response, they will no longer be strong
enough to generate a pause if they are weakened as a conse-
quence of learning. To accommodate this, we designated the
number of parallel fibers that form a pattern as 200, such that
after learning they had sufficient strength to produce a burst–
pause response. In doing so, we assumed that doubling the
strength of the input doubled the pause length. This is somewhat
of a generous assumption because, although the pause duration
is a linear function of the EPSP and the charge injected by the
inputs, the slope of the correlation is �1 (unpublished obser-
vations and ref. 2). The consequence of this assumption is that
the ANN would overestimate the pattern recognition capacity
when information is encoded as pauses.

In acutely prepared rat cerebellar slices and with synaptic
inhibition blocked, strong parallel fiber synaptic inputs generate
pauses that had an average duration of 82 � 53 ms (mean � SD.)
and that approximately halved in duration (43 � 22 ms) after a
standard LTD protocol (2). Based on these observations, the
ANN was reconfigured such that before learning, an input
pattern generated a 82-ms-long pause, and after learning, the
duration of the pause was halved to 41 ms. Similar to the
assumption made for our ANN that was based on the linear firing
rate algorithm, here too, we assumed that the duration of the
pause was a linear function of the strength of parallel fiber
inputs. To incorporate the variability of real Purkinje cells into
the P-ANN (as done for the linear firing rate algorithm), based
on the experiments on Purkinje cells in acutely prepared rat
cerebellar slices reported above, we used an average pause SD
of 17 ms. We then varied the number of patterns that a Purkinje
cells had to learn and calculated the corresponding s/n exactly as
it was done for estimating pattern recognition capacity when
Purkinje cells encoded information in their firing rate. Based on
this P-ANN, the estimated s/n for discriminating between pauses
before and after learning was �6, a value that is in remarkable
agreement with that of 5.6 � 1.3 found experimentally (2).

Estimating the Number of Parallel Fiber Inputs That Form a Pattern.
An estimate of the number of parallel fiber inputs constituting
a pattern was required to determine the pattern recognition
capacity of Purkinje cells. We assumed that Purkinje cells use
their full linear dynamic range and that activation of an un-
learned pattern increases the firing rate of a Purkinje cell from
a spontaneous rate of 50 to �250 spikes per second. It has
recently been demonstrated that the maximum firing rate of
Purkinje cells after stimulus is linearly related to the charge
injected by the corresponding EPSC and that, assuming a
membrane potential of �60 mV, the asynchronous injection of
�30 pC of charge is needed to drive the firing of Purkinje cells
to �250 spikes per second when inhibitory synaptic transmission
is pharmacologically blocked (3) (see also Fig. S2A). The charge
needed to increase the firing rate to �250 spikes per second is
larger in the presence of intact inhibition, and it is on the order
of �78 pC (3).

If each input releases neurotransmitter only once, then the
number of inputs in a pattern is simply obtained by dividing the
above charge estimates by the average charge injected by a single
parallel fiber. We thus experimentally determined the charge
injected by single parallel fiber inputs by electrically stimulating
the granule cells and measuring resulting EPSCs in Purkinje cells
voltage clamped at �60 mV. We found that estimates of the
charge injected by a single granule cell EPSC were not very
reliable because of the small amplitude and the relatively large
noise associated with them. Thus, to more accurately estimate
the charge injected by a parallel fiber input the stimulus intensity
was increased to activate several granule cells (Fig. S2B) and the
relationship between the total charge injected and peak EPSC
amplitude established. This was used in combination with a

previously obtained estimate of a single parallel fiber EPSC
amplitude (�11.7 pA) to estimate that a single parallel fiber
input injects �0.12 pC of charge. Thus, with inhibition blocked,
and assuming that each input releases neurotransmitter only
once, each pattern is made of 250 parallel fiber inputs (30
pC/0.12 pC; Fig. S2C, black symbols), whereas with intact
inhibition, the pattern size is 650 (78 pC/0.12 pC).

In response to a discrete sensory input in vivo (9), and with our
method of granule cell stimulation (photorelease of glutamate
onto a patch of granule cells), each parallel fiber is likely to
release neurotransmitter more than once. Because parallel fibers
show a significant paired-pulse facilitation under physiological
conditions (10) repeated release of neurotransmitter from the
same parallel fiber input will reduce the number of parallel fibers
that form a pattern. To adjust the number of inputs constituting
a pattern accordingly, we measured the extent of facilitation that
is likely to occur under our experimental conditions.

In response to a discrete sensory input in vivo granule cells fire
a short burst of �3 action potentials at an average rate of 75 Hz
(9). When a patch of granule cells was electrically stimulated 3
times at 75 Hz (see Fig. S2D), the time course of the first 2 EPSCs
resembled that obtained from the asynchronous activation of
granule cells by photorelease of glutamate (see Fig. 1 in the main
text). Because of the strong paired-pulse facilitation present at
this synapse, the second EPSC injected 2.50 � 0.2 times more
charge (n � 9) than the first EPSC. Assuming that each input can
release neurotransmitter twice, and taking into consideration
this paired pulse facilitation, 70 (Fig. S2C, red symbols) or 185
parallel fiber inputs are needed to form a pattern in the absence
and presence of inhibitory synaptic transmission, respectively.

Versatility of the Linear Algorithm in Pattern Recognition. As dis-
cussed in the main text, the utility of the linear computational
algorithm in pattern recognition by Purkinje cells was demon-
strated under physiological conditions where inhibitory synaptic
transmission was intact and parallel fiber inputs were activated
asynchronously. Additional experiments were done to evaluate
the efficacy of this encoding mechanism under a variety of
different conditions. The reproducibility with which the same
input was encoded was estimated from the resulting standard
deviations. The experimentally determined standard deviations
in each condition were incorporated with the artificial neural
network to estimate the capacity of Purkinje cells in recognizing
patterns.

The data shown in Fig. S3 correspond to a condition where the
pattern recognition capacity of Purkinje cells was evaluated for
synchronous inputs by electrically activating granule cells in the
presence of blockers of inhibitory synaptic transmission.

Averaging and the Implications of Correlated Noise for Pattern
Recognition Capacity. As first noted by Eccles (11), the conver-
gence of many Purkinje cells onto neurons of the deep cerebellar
nuclei (DCN) is a feature of the cerebellar circuitry that allows,
in principle, for the cerebellum to use averaging to reduce noise.
However, averaging only reduces noise that is not correlated.
The extent to which cerebellar averaging reduces noise and thus
increases the s/n of pattern recognition would be less than
optimal if part of the noise in the firing rate of individual
Purkinje cells is correlated.

Let us consider the situation in which X Purkinje cells have
learned the same Y patterns. When a specific learned pattern is
presented to these X Purkinje cells there are several sources of
noise that will cause variability in their response and thus to their
ability to correctly recognize that specific pattern as being
learned. These sources are both intrinsic and extrinsic to Pur-
kinje cells. Given that, in the absence of any synaptic input,
Purkinje cells fire action potentials at a rate of �50 spikes per
second, intrinsic sources include factors that govern their pace
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making and excitability (such as the state of their numerous
voltage-gated ion channels). Extrinsic sources include differ-
ences in the timing of inhibitory synaptic inputs from numerous
spontaneously active interneurons presynaptic to each Purkinje
cell and the fact that the release probability of individual parallel
fiber inputs is significantly �1. Given the nature of these noise
sources, it is very unlikely that the noise contributed by them to
each of the X Purkinje cells is correlated. Thus, averaging would
reduce the noise coming from these sources by a factor of �X.
The consequence of this reduction in noise is that by the virtue
of averaging the cerebellum recognizes a specific pattern as
learned with a higher signal to noise ratio than an individual
Purkinje cell.

It is worthwhile to consider the efficacy of the averaging
mechanism described above for recognizing a specific pattern if
some of the noise among different Purkinje cells is correlated.
Examples of such correlated noise sources might be Purkinje
cell–Purkinje cell collaterals, electrical coupling between Pur-
kinje cells or common inputs from interneurons. Although there
is currently no evidence to suggest that these sources result in
significant correlated noise among Purkinje cells that converge
onto a common target neuron, we nonetheless evaluated the
consequences of the presence of correlated noise on the efficacy
of averaging in improving pattern recognition. Fig. S4 shows how
the resulting s/n depend on the extent to which noise is correlated
in Purkinje cells (0, 25%, 50%, and 100% noise correlation). As
should be immediately obvious, the only instance in which

averaging fails to improve the signal to noise ratio is when noise
is 100% correlated. It should be noted however, that the noise
contributed by the pattern recognition scheme is unique to each
neuron and, thus, it follows that under these conditions, noise
will never be 100% correlated.

The suggestion that averaging can be used to minimize noise
contributed by the cerebellum is consistent with a recent study
that examined the trial by trial correlation between the firing of
individual Purkinje cells and eye movements in awake rhesus
monkeys (12). It was concluded that the majority of the vari-
ability in eye position was accounted for by the variability in the
visual motion signals to the cerebellum and that the cerebellum
and other downstream structures contribute little additional
noise. It is likely that averaging is implemented to minimize the
noise added by the cerebellum during pattern recognition,
although in this case Purkinje cells converge onto neurons of the
vestibular nuclei rather than the DCN.

Medina and Lisberger (12) also reported that for different
Purkinje cells involved in the performance of the same motor
task, as much as 50% of the variability in their firing rate was
correlated. It is important to note that this correlation simply
reflects the fact that these Purkinje cells receive common inputs
and are similarly driven. Thus, the commonality of inputs
underlying this measured correlation is not analogous to the
noise discussed above for the decoding of a specific pattern, but
from trial to trial is instead reflective of various patterns (signals)
being presented to the different cells.
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A                                                                           B

C                                                                     D

Fig. S1. Estimation of pattern recognition capacity of Purkinje cells using the implemented P-ANN. (A) The ANN was programmed to simulate a case where
each pattern contained 650 PF inputs. Before learning, each pattern increased the firing rate to 250 spikes per second. The ANN was then simulated to recognize
25 patterns. As a consequence of LTD, each learned pattern was weakened such that it now increased the firing rate to only (but exactly) 150 spikes per second.
Because some of the PFs that comprised the learned patterns were, at random, also assigned to some of the novel patterns, activation of novel patterns no longer
increased the firing rate to 250 spikes per second but had a distribution with a slightly lower mean. (B) The experimentally determined response variability of
Purkinje cells in cerebellar slices to repeated delivery of the same stimuli was incorporated with that of the ANN to determine the s/n of pattern recognition of
the resulting P-ANN. (C and D) Same as above but with the system learning 100 patterns instead of 25.
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Fig. S2. Estimating the number of parallel fiber inputs that form a pattern. (A) The relationship between maximum firing rate of a Purkinje cell and the total
charge injected by asynchronous activation of parallel fibers. (B) EPSCs recorded in a voltage-clamped Purkinje cell in response to repeated electrical activation
of several parallel fibers. (C) Transformation of the data presented in A to correspond with the number of parallel fiber inputs needed to increase the firing rate
of a Purkinje cell when each input releases neurotransmitter only once (black symbols) and when each input releases neurotransmitter twice (red symbols). (D)
The impact of paired-pulse facilitation on the charge injected into Purkinje cells by parallel fibers.
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Fig. S3. Pattern recognition capacity of Purkinje cells with synchronous inputs. (A) In voltage-clamped Purkinje cells, synchronous activation of granule cells
with a 200-�s electrical pulse resulted in EPSCs that had fast kinetics. (B) Raster plots of the response of a Purkinje cell to 50 repeated presentations of the same
electrical stimulus. Vertical bars indicate the time of occurrence of each action potential. Below each raster plot, the associated population histogram is shown.
The histograms to the right of each raster plot show the resulting maximum instantaneous firing rate distribution after stimulus. Each distribution was fit well
by a Gaussian function (red line). (C) Raster plot of an experiment demonstrating a reduction in the maximum firing rate response following induction of LTD.
LTD was produced using a standard protocol (5-min train of 1-Hz stimulation with parallel fiber stimulation preceding that of climbing fiber by 50 ms). (D) The
scatter plot of the standard deviations of the maximum firing rates after stimulus determined from a number of experiments similar to that described above.
Symbols refer to experiments where the standard deviation was estimated before (solid symbols) and after (open symbols) induction of LTD. (E) The
experimentally determined standard deviations were implemented in the P-ANN to estimate the s/n in distinguishing learned patterns from novel ones as the
number of patterns to be learned was increased (black symbols). The impact of altering the Purkinje cell response variability on their pattern recognition capacity
was estimated by increasing and decreasing the experimentally determined standard deviations.
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A                                   B 25% corr. noise
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Fig. S4. Impact of correlated noise on averaging. (A) Purkinje cells carrying the same information were assumed to converge onto a single output neuron. The
improvement in s/n for pattern recognition as a consequence of averaging is shown as the number of Purkinje cells that converged onto the output neuron was
increased. In this instance, it was assumed that the noise in each cell was not correlated to any other (0% Corre. Noise). (B) The same as that in A expect with
different extents of correlated noise (from 25% to 75%).
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