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A.  Fröhlich’s model 

 

Figure 1 from the main text depicts Fröhlich’s 

model for energy flow through a  complex system.  

The system of interest is taken to consist of a number 

Z of coupled oscillators whose collective motions 

occur at frequencies ωi (for i = 1 to Z) in a band of finite width at average frequency ω0.  The 

model does not consider the form of the dispersion of these frequencies, but an important 

property is the lowest frequency ω1.  These collective motions are each fed energy at the rate 

of s per unit time, 

  s
t

Ei =
d

d
,        (6) 

 while two-body “collisions” with surrounding bath states dissipate this energy at the rate of 
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In this equation, φ is the rate of energy gain at 0 K if one quantum of excitation is present, h is 

Planck’s constant h/2π, k is Boltzmann’s constant, T is the bath temperature, and ni is the 

average number of quanta of excitation of collective mode i. In addition, three-body 

interactions involving two system states and the bath redistribute the energy amongst the 

oscillators, with the net rate of energy loss from oscillator i being 
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for scaling factor χ.  Equations 2-3 arise from the detailed balance requirement that 

equilibrium is established whenever s = 0, with the average number of quanta in each mode 

given by the Planck distribution function (main text Eqn. (1))  
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depicting a canonical energy distribution.  Such an energy distribution is a requirement of 

most models for chemical reaction kinetics, eg., the Arrhenius equation and transition-state 

theory. 
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B.  Analytical Properties of Fröhlich’s model deduced from the simulations 

 

The total number of quanta N evaluated across the full parameter space (see Section E) 

is well approximated by 

TnsZNN 1
0

ϕ
χ +≈ = .        (9) 

This equation is similar to Fröhlich’s equation, Eqn. 2 from the main text, but applies beyond 

the high-temperature limit for which the original equation was derived. 

 

To measure the energy present in the system oscillations as a result of the steady-state 

energy flow from input source to bath, the effective system temperature is defined from the 

total system energy E using the definition 
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Over all of the parameter space examined in the simulations (see Section E), this effective 

temperature is well represented by  

kTS es
T
T 2/01 ω

φ
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C.  The Wu-Austin Hamiltonian  

 

Wu and Austin (33-35) proposed a dynamical model containing the Z system modes 

connected to harmonic baths representing the energy input source and the surrounding 

thermal-relaxation bath.  For ZB relaxation-bath modes k of frequency Ωk and ZI input modes l 

of frequency Ω′l, their Hamiltonian is (main text Eqn (5)) 
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where ai, bk, and cl are creation operators for the system, bath, and input oscillators, 

respectively.  Further, they assumed that unspecified processes maintain the bath and input 

oscillators in equilibrium canonical distributions at temperatures T and TI, respectively.  We 

implement these constraints using Nose-Hoover thermostats (42) with time constants of 0.1 ps 

each.  Only linear frequency dispersion amongst Z = 25 source oscillators is considered, while 

a uniform spectral distribution of the bath and input oscillators is assumed, choosing ZB = 430 

bath modes and ZI = 200 input modes; as demonstrated in Supporting Information, all simple 

properties of the (quantum (43, 44) ) dynamics are converged to the infinite-mode limit using 

these numbers of oscillators.   

 

 The remaining parameters present in the Wu-Austin Hamiltonian are the couplings α, 

β, and γ; these may be related to mode-specific Fröhlich-like parameters using (in the high-

temperature limit for simplicity) (49-51) 
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where TSi is the effective temperature of system mode i.  The simulations described later 

reveal that these si rates are very close to Fröhlich’s parameter s and indeed indicate the 

energy flow into the system modes from the input.  It is more difficult to establish a physical 

connection between the Wu-Austin quantities φi, χi and Fröhlich’s parameters φ, χ, however. 

The energy flows φ and φI have different functional dependences while the bath thermostats 

provide non-linear coupling even when β = 0 making the illustrative χ = 0 scenario 

unattainable.   
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D.  Methods 

 

The steady state solution to Fröhlich’s equations, Eqn. 6-8, is evaluated by two 

independent methods.  First, Eqns. 6-8 are solved directly by numerical solution to the 

differential equations.  A fourth-order Runga-Kutta method is used with adaptive time step 

and trajectory duration.  The time step used varied from 10-6 φ/kT (rare) to 0.5 φ/kT 

(common).  Very short time steps were required especially when the condensate forms and 

when ω0/kT = 10.  Second, the steady-state solution was found by solution of the Equations 7-

11 from Fröhlich’s treatise (1).  These lead to: 
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which are solved for a self-consistent solution starting with a trial value of N.  If the value of 

N used (in Eqn. 15) in iteration k of this procedure is Nk and that deduced from Eqn. 17 is 

Nk+1, the calculation procedure minimizes Nk+1 – Nk.  Initial values N0 are obtained by 

extrapolation from results obtained either at smaller values of χ/φ or at larger values of 

kT/0ωh .  A Newton-Raphson procedure is used for finding the root of the function, if 

possible.  For arbitrary values of Nk, a solution cannot always be found with physically 

meaningful values, ie., 0 < A ≤ 1 and ni > 0.  In general the function Nk+1 – Nk has a dense 

manifold of roots but of these only one is physically meaningful.  When the Newton-Raphson 

procedure cannot find this one root, grid searching using increasingly finer and finer grids is 

performed.  The results obtained from the two computational procedures are in excellent 

agreement. 

 

 When the additional terms 3
iL are added to Fröhlich’s equations (see Section F), the 

steady state is obtained from numerical solution to the differential equations only. 
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The coherence lifetime arising from the quantum dynamics of the lowest-frequency 

mode in the Wu-Austin model is determined from the calculated linewidths of the power 

spectrum A(ω) of the dynamics, obtained from the Fourier transform 

  ∫
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of the autocorrelation of the motion 
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of an initial Gaussian coherent state soliton ψ1(0) in system oscillator 1, where pB and qB are 

the momenta and positions of the bath oscillators, respectively, while pI and qI are the 

momenta and positions of the input oscillators, respectively.  Note that this approach ignores 

the direct contribution to decoherence ensuing from the remaining system oscillators and the 

baths and hence provides an upper bound to the coherence lifetime.  The quantum dynamics is 

determined using the Thawed-Gaussian approximation (43, 44)  to provide the solution to the 

time-dependent Schrödinger equation, an approximation that is exact for the time-dependent 

effective harmonic potential provided by Eqn. 5.  This method allows the quantum dynamics 

of the system to be determined using slightly augmented classical molecular mechanics 

methodologies.  To ensure that coherence is not lost because of numerical issues associated 

with the trajectory solver, energy conservation to six decimal places is maintained over the ca. 

1 μs time span of the trajectories.  Some detailed examples of how coherence is determined 

from the dynamics is provided later in Fig. S10.  To aid in the spanning the configuration 

space of the integrals in Eqn. 19, the frequencies, positions, and momenta of the bath and 

input modes are randomized after ca. every 50 ps of dynamics, this time being much larger 

than any coherence time found in our simulations.  The bath modes are selected randomly at 

frequencies up to h/2kT  while the input modes are selected only within the critical range of  

ω1/2 to 3(2ω0-ω1)/2 for computational efficiency. 

 

 Numerical solutions to the Wu-Austin Hamiltonian dynamics in regions depicting 

strong condensates are difficult to obtain.  Large values of the energy couplings α, β, and γ 

are required so that the condensate forms within a computationally feasible time frame, while 

excessive values of α or β lead to crossings of the transition state that define the physically 

meaningful region of the potential.  Extreme source temperatures are demanded as the 

condensate must feed enormous energy into the lowest mode and the energy supply cannot 
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falter; large source temperatures also allow γ, and hence α and β, to be minimized.  The 

condensates reported display the expected dependence on the system parameters and can be 

formed using a variety of starting conditions. 
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E.  Numerical Solutions to Fröhlich’s equations over the whole range of the 

parameter space 

 
 Solutions to Fröhlich’s equations obtained over a wide region of the parameter space 
are provided in Figs. S1-S8.  The parameters used in these simulations are: 
 

Figure Tempa Method Dispersion Z χ/φ χ3/φc

S1 Planck numerical linear 25 varied 0 
S2 Planck numerical linear 100 varied 0 
S3 Planck numerical linear 500 varied 0 
S4 Planck numerical cosine 25 varied 0 
S5 Planck numerical Gaussian 25 varied 0 
S6 Classical numerical linear 25 varied 0 
S7 Planck approximateb - - varied 0 
S8 Planck numerical linear 25 0.02 varied 

a: At thermal equilibrium either a Planck semiclassical ensemble with ( ) 1/ 1
−

−= kTT
i

ien ωh  or 

else a classical ensemble embodying equipartition of energy with i
T
i kTn ωh/=  

b:  Using the approximate expressions:   TnsZNN 1
0

ϕ
χ +≈ =

 and 
kTS es

T
T 2/01 ω

φ
h−+=

 
c: See Supporting Information Section C. 
 
 
Each figure shows results from a complete 4-dimensional grid evaluated at: 

• s/φ = 0, 0.010, 0.028, 0.077, 0.22, 0.76, 1.67, 4.64, 12.9, 35.9, and 100; 
• χ/φ = 0, 0.00010, 0.00028, 0.00077, 0.0022, 0.0060, 0.046, 0.13, 0.36, and 1; 
• kT/0ωh  = 0.010, 0.022, 0.046, 0.10, 0.22, 0.46, 1.0, 2.2, 4.6, 10.0, with some results 

also included for kT/0ωh = 10-3, 10-4, and 10-5 ; and 
• ω1/ω0 = 0.04, 0.12, 0.20, 0.28, 0.36, 0.44, 0.52, 0.60, 0.68, 0.76, 0.84.0.92. 

 
 
 
On each figure, a grid of plots of the 
form shown to the right is provided, with 
each plot corresponding to the indicated 
values of kT/0ωh  and ω1/ω0.  Each plot 
presents the condensate property 
evaluated at different values of s/φ and 
χ/φ, as indicated to the right. 
  
 
 
 

1
0.36
0.13

0.046
0.017

0.0060
0.0022

0.00077
0.00028
0.00010

0

0
0.

01
0

0.
02

8
0.

07
7

0.
22

0.
76

1.
67

4.
64

12
.9

35
.9

10
0

φ/s

φ
χ



10 
 

Each figure also consists of parts A-G (on separate pages) giving the following properties of 
the condensate: 
 

Part Property 
A 

T
TSlog  

B 

Z
Nlog  

C 
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NN 0
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Part A shows the effective temperature of the system modes estimated from the total system-
mode energy using Eqn. 10. It is this property that is shown hatched in Figs. 2 and 3 of the 
main text.  The system temperature can exceed 30000 K for a room temperature bath. 
 
Part B shows the average number of vibrational quanta per oscillator.  This can be quite low 
for systems at low vibrational temperature but exceeds a million for some of the condensates 
considered.  Fröhlich condensation thus indeed leads to large amounts of vibrational energy in 
the system. 
 
Part C shows the number of quanta per oscillator found in the system above that produced at 
χ = 0.  High excitation rates and low relaxation rates to the bath can lead to very high values 
of N in a way that does not involve condensation, so Part C better represents the condensate 
than does Part B.  Use of the Wu-Austin Hamiltonian does not lead to results for this quantity, 
however, and it may be of less general utility. 
 
Part D shows the number of quanta in the lowest-frequency mode, normalized by the number 
of oscillators.  This quantity grows large as the condensate forms and so this property shows a 
different aspect of the condensation process than that shown in Parts B and C. 
 
Part E shows the condensation index η that is reported in the main text in Figure 2.  It shows 
approximately how many of the excess quanta associated with condensation reside in the 
lowest mode and is a good single descriptor of the condensation process.  Strong condensates 
have indices exceeding 0.8, with 0.9 being desirable. 
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Part F shows another descriptor of the condensation, the fraction of the total vibrational 
energy present in mode 1.  When the condensate forms this is high, but a large amount of 
vibrational energy is an additional requirement. 
 
Part G enhances a property of the condensation when it is weakly established, the ratio of 
number of vibrational energy present in mode 1 to that obtained at χ = 0 (ie., when there is a 
steady state energy flow from source to bath but no condensation).  This ratio can reach large 
values but all those above 2 are represented as white so as to emphasise the weak 
condensation regime.  Extracts of these figures are presented in the main text in Figure 3. 
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Fig. S3B: LINEAR    Z= 500  log N/z
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Fig. S4A: COSINE    Z=  25  log TS/T
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Fig. S4B: COSINE    Z=  25  log N/z
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Fig. S4F: COSINE    Z=  25  n1 1/ ni i
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Fig. S5A: GAUSSIAN  Z=  25  log TS/T
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Fig. S5B: GAUSSIAN  Z=  25  log N/z
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Fig. S5C: GAUSSIAN  Z=  25  log (N-N =0)/z
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Fig. S5D: GAUSSIAN  Z=  25  n1/N
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Fig. S5E: GAUSSIAN  Z=  25  =(n1-n1
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Fig. S5F: GAUSSIAN  Z=  25  n1 1/ ni i
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Fig. S6A: CLASSICAL Z=  25  log TS/T
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Fig. S6B: CLASSICAL Z=  25  log N/z
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Fig. S6C: CLASSICAL Z=  25  log (N-N =0)/z
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Fig. S6F: CLASSICAL Z=  25  n1 1/ ni i
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Fig. S7A: ANALYTICAL        log TS/T
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Fig. S8C: LINEAR 3 log (N-N
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F. Variations to the basic Fröhlich model 
 

 

We have shown that the appearance of the Fröhlich condensate and the significant 

perturbations to the energy partitioning that arise in partial condensates are both more 

prominent when the bandwidth is large.  This raises the question as to whether the Fröhlich 

model, Eqns. 6-8, includes sufficient processes to properly represent actual physical 

phenomena.  For example, for small values of ω1/ω0, the system modes can act as their own 

bath, allowing high-order scattering events to redistribute the system energy without requiring 

energy exchange with the external bath via Eqn. 8.  Such higher-order terms can be 

approximated by an effective low-order equation of the form 
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We have evaluated the steady-state for this enhanced model at χ = 0.02 and the results are 

given in detail in Figure S8.  Condensation is completely inhibited when χ3 exceeds χ, 

indicating that the relative importance of these two processes is critical.  It is thus clear that 

any specific application of Fröhlich’s model is non-trivial and requires the prior validation of 

the basic assumptions. 

 

Another variation of the model which we considered was the application of random 

amounts of energy to each mode, with s then indicating the average power input per 

oscillator.  The primary results were robust to this modification, indicating that delicate 

balancing of the energy sources is not required for condensation. 
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G.  Properties of the Wu-Austin Hamiltonian 

 
Obtaining Fröhich’s energy relaxation rate φ and the associated coherence lifetime from the 
dynamics 
 
 In Fröhich’s model the rate of energy relaxation to the bath is φ.  This is identified as 
dE/dt at the zero-point level for a system mode in contact with a thermal bath at temperature 
T.  Figure S9 shows the results obtained by averaging over 4000 trajectories using ZB = 6 to 
215 bath modes, with convergence achieved above 50 modes; the bath temperature is T = 300 
K while one system oscillator is used, typically at ω1 = 25 cm-1 ≡ 36 K. 
 
 Figure S9A shows the energy flow into system mode 1 as a function of time.  Four 
different values of the dynamical parameter α are used.  As the total coupling is related to the 
total number of bath modes ZB, the results are interpreted using the variable ZBα which takes 
on values of ZBα/k = 0.023, 0.047, 0.092, 0.139, 0.46, and 4.6 K   At each value of the 
coupling, a linear increase in the average mode-1 energy with time is seen.  The slope of this 
response is the energy relaxation rate φ. 
 
 Figure S9B shows φ as a function of the coupling α plotted on a log-log scale over 
many orders of magnitude.  A line is fitted to the data and indicates  
  φ = 230 (ZBα)1.86 ns  when α is in K. 
This is close to a quadratic dependence of the rate on the number of modes and the coupling 
strength per mode α.  If the exponent is frozen at 2 then the coefficient becomes 200 K-1 ns-1. 
Wu and Austin provide an expression for φ for each system mode: 
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where N is the number of quanta in a mode of the given frequency at equilibrium.  This has 
the quadratic dependence on α and, as revealed by the simulations, but for large ZB this value 
scales proportional to ZB.  Hence the Wu-Austin expression scales differently to Fröhich’s 
phenomelogical quantity φ. 
 
 Figure S9B also shows the effect of varying ω1.  A small effect is anticipated based on 
Wu and Austin’s equation. The calculated response is small but appears erratic.  
 
 Figure S9C shows the coherence time plotted against ZBα on a log-log scale.  A small 
dependence on the mode frequency is again seen, but at ω1 = 25 cm-1 a straight line is fitted to 
the data that revels 
 τ = 0.81 K ps / (ZBα)0.92   ps when α is in K so the rate is 1/τ = 1230  (ZBα)0.92   ns-1. 
Hence the rate of decoherence is roughly proportional to the coupling whilst the rate of 
energy transfer is roughly proportional to the square of the coupling. 
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Figure S9: Effect of varying the number of modes and the coupling α on the rate of energy 
equilibration between the system and bath and on the associated coherence lifetime. 
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Energy relaxation vs. phase decoherence 
 
 While the energy relaxation rates of a few K per ns reported in the previous 
simulations are quite small, phase coherence is lost within a few ps. Figure S10 shows how 
the phase coherence is lost so quickly in this one-system-mode situation.  Figure S10A shows 
the energy distribution in mode 1 evaluated at different times.  All distributions are centred 
about the initial zero-point energy of half of 25 cm-1 ≡ 18 K.  If the system oscillator was 
uncoupled from the bath then the energy would not vary and the distribution would be a delta 
function.  As time proceeds, the dynamics takes ever increasing excursions to lower and 
higher energies.  The net drift of the average energy is but a small fraction of the dynamical 
energy fluctuations, however.  It is this feature that causes the coherence time to be much 
shorter than the energy relaxation time.  This appears to be a generic property of the cubic 
coupling used in the model. 
 The rapid energy flow to and from the system mode causes the phase of the 
wavepacket to scramble.  Figure S10B shows the dispersion of the phase produced after just 
one vibrational period of motion.  It is spiked at -π and would be a delta function at this value 
if there was no coupling with the bath.  This phase shift generates the zero-point energy of the 
harmonic oscillator.  As the bath coupling increases, large phase shifts arise even after one 
period.  From a spectroscopic point of view, this is interpreted as:  a large number of levels 
are thermally populated in the bath, and because of the anharmonicity the system oscillator 
frequency is perturbed by different amounts depending on the bath occupation, so the thermal 
motion causes the spectrum to broaden. 

Shown in Figure S10C is the autocorrelation function (Eqn. 19) calculated for a range 
of couplings α.  This shows how the increasing phase decoherence with increasing coupling 
causes the autocorrelation function to decay.  Figure S10D shows one line from the spectra 
evaluated from these calculations using Eqn. 18.  Note that the line is centred at 2/ωh  = 18 
K in accordance with the zero-point energy requirement.  The coherence time is extracted 
from the full-width at half-maximum of the spectral line. 
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Figure S10: Understanding how the Wu-Austin Hamiltonian leads to phase decoherence at 
rates many orders of magnitude faster than the energy transfer rate. 
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Obtaining Fröhich’s energy input rate s and the associated coherence lifetime from  dynamics 
 
 Wu and Austin give the power absorbed by system mode i in the classical limit as 
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so that if γ and T are in K and ω in cm-1 then the calculated rate is in units of K/ns.   
Numerical results from simulations are shown in Figure S11.  These simulations involve just 
one system oscillator initially at its zero-point energy.  Figure S11A shows the increase in the 
energy of the system mode with time owing to the coupling with the input oscillators, while 
the initial slope s is plotted as a function of ZIγ2(TI-TS1)/ω1 on a log-log scale.  A linear 
correlation is indicated on this figure giving a slope of 0.98, very close to the expected value 
of one.  Assuming a slope of one, the prefactor is determine to be 140 cm-1/(K2ns), 50% larger 
than the value expected based on the Wu-Austin result.  The difference originates from the 
ways in which the frequency distributions of the source modes are treated.  Wu and Austin 
assume low frequency so that the density of input states about the system oscillators does not 
vary with energy.  In the calculations, a band of finite width (from 12.5 to 50 cm-1 for ω1 = 25 
cm-1) is used.  The differences are only minor, and the advantage gained in having a simple 
algorithm for specifying the input oscillator bandwidth across the whole Wu-Austin 
parameter space in a highly computationally efficient scheme is more significant than are 
these differences. 
 
 Figure S12C shows the calculated coherence lifetime as a function of [ZI

2γ2(TI-TS1)]1/2 
plotted on a log-log scale.  Proper analysis of the effect of the system oscillator frequency ω1 
on the coherence lifetime requires a more sophisticated algorithm for specifying the input 
oscillators than is used herein, however; all of the results shown are for ω1 = 25 cm-1. The 
linear correlation shown in the figure has a slope of -0.994 indicating a reciprocal 
relationship: 
 τ = 27 ps K3/2  [ZI

2γ2(TI-TS1)]-1/2   
so the rate of decoherence is 1/τ = 37 ns-1 K-3/2  [ZI

2γ2(TI-TS1)]1/2.  Hence the interaction of the 
system with the input oscillators has the same general property as does that with the thermal 
bath: the rate of energy transfer is proportional to the coupling squared whilst the rate of 
phase decoherence is proportional to the coupling. 
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Fig. S11: Effect of varying the number of modes, the coupling γ, and the source temperature 
on the rate of energy flow from the input and on the associated coherence lifetime. 
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Strong Fröhlich condensate from the Wu-Austin Hamiltonian in the low-frequency narrow-
band limit 
 

Figure S12 shows the production of a strong Fröhlich condensate in the narrow-band 
high-temp. limit from an initial system in thermal equilibrium at 300 K.  The development of 
the average kinetic energy in four of the Z = 25 system modes used in the simulation is 
shown, along with the instantaneous energy in the condensing mode, mode 1.  The observed 
energy fluctuations are very large and indicate highly incoherent motion. 
 
 

 
Fig. S12:  Dynamics of the Wu-Austin Hamiltonian in the wide-band high-temp. limit (ω1/ω0 
= 0.76, kT/0ωh  = 1/15), showing the change in the average kinetic energy in modes 1 (the 
mode undergoing Fröhlich condensation), 2, 3, 12, and 25 for Z = 25 system oscillators; the 
instantaneous kinetic energy in mode 1 is also shown (thin line).  Other parameters are: linear 
frequency dispersion, ZB = 430 bath modes at T = 300 K (hence ω0 = 10.425 cm-1, ω1 = 7.923 
cm-1), ZI = 200 source modes at TI = 400000 K, α/k = 53 μK, β/k = 75 μK,  γ/k = 375 μK. 
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Strong Fröhlich condensate from the Wu-Austin Hamiltonian in the high-frequency narrow-
band limit 
 

Figure S13 shows the production of a strong Fröhlich condensate in the narrow-band 
low-temp.  limit from an initial system in thermal equilibrium at 300 K.  The development of 
the average kinetic energy in four of the Z = 25 system modes used in the simulation is 
shown, along with the instantaneous energy in the condensing mode, mode 1, as well as in 
mode 2.  The observed energy fluctuations are very large and indicate highly incoherent 
motion.  The simulation conditions are similar to those used by Mesquita et al. for modelling 
Fröhlich condensation in the amide-I modes of proteins.  Formation of the condensate 
requires exceptionally high input bath temperatures of at least 400000 K, while the system 
temperature of the condensate is typically also of this magnitude.  Such a condensate could 
not form in a biological system.  Condensates in this regime take over 100 times longer to 
form than do the condensates simulated in the high-temperature limit, requiring over 1 μs of 
simulation time. 

 
Five individual trajectories are shown in Figs S13A-S13E, with the driving force for 

condensation increasing in order A to E.  D-E use an input temperature of 400000 K but this 
is inadequate as the energy in the condensing mode increases to exceed this value; A-C use a 
much higher input temperature of 4 MK but the ratio of the input to bath coupling is less and 
so the condensate is not so well formed.  For the least driven trajectories A and B, the partial 
formation of the condensate is apparent, with 15-40 % of the quanta exciting the lowest-
frequency mode.  The total energy in the condensing mode changes significantly with time, 
however, and at times more energy is found in mode 2 than in mode 1.  Fig S13C shows a 
much better formed condensate with 60% of the quanta in the lowest mode, but again the 
fluctuations are large.  Fourier transformation of the dynamics indicates that the fluctuations 
are white noise above ca. 20 MHz, but large oscillations are found in the 400 kHz region.  
Such profound fluctuations at low frequency may be a signature of strong mechanically 
formed condensates; in this case, the oscillator being driven is at 300 cm-1 so the system 
response is at 1/20000000 of the oscillator frequency!  In the more strongly driven 
condensates shown in Figs S13D and S13E, the oscillators are suppressed but still apparent, 
and the condensing mode always has the largest occupancy. 
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Fig. S13A:  Dynamics of the Wu-Austin Hamiltonian in the wide-band low-temp. limit 
(ω1/ω0 = 0.94, kT/0ωh  = 1.46), showing the change in the average kinetic energy in modes 1 
(the mode undergoing Fröhlich condensation), 2, 3, 11, 12, and 25 for Z = 25 system 
oscillators; the instantaneous kinetic energy in modes 1 and 2 is also shown (thin lines).  
Other parameters are: linear frequency dispersion, ZB = 430 bath modes at T = 300 K (hence 
ω0 = 300 cm-1, ω1 = 282 cm-1), ZI = 200 source modes at TI = 4000000 K, α/k = 860 μK, β/k = 
2.16 μK,  γ/k = 216 μK. 
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Fig. S13B:  Dynamics of the Wu-Austin Hamiltonian in the wide-band low-temp. limit 
(ω1/ω0 = 0.94, kT/0ωh  = 1.46), showing the change in the average kinetic energy in modes 1 
(the mode undergoing Fröhlich condensation), 2, 3, 6, 12, and 25 for Z = 25 system 
oscillators; the instantaneous kinetic energy in modes 1 and 2 is also shown (thin lines).  
Other parameters are: linear frequency dispersion, ZB = 430 bath modes at T = 300 K (hence 
ω0 = 300 cm-1, ω1 = 282 cm-1), ZI = 200 source modes at TI = 4000000 K, α/k = 860 μK, β/k = 
8.6 μK,  γ/k = 216 μK. 
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Fig. S13C:  Dynamics of the Wu-Austin Hamiltonian in the wide-band low-temp. limit 
(ω1/ω0 = 0.94, kT/0ωh  = 1.46), showing the change in the average kinetic energy in modes 1 
(the mode undergoing Fröhlich condensation), 2, 3, 12, and 25 for Z = 25 system oscillators; 
the instantaneous kinetic energy in modes 1 and 2 is also shown (thin lines).  Other 
parameters are: linear frequency dispersion, ZB = 430 bath modes at T = 300 K (hence ω0 = 
300 cm-1, ω1 = 282 cm-1), ZI = 200 source modes at TI = 4000000 K, α/k = 860 μK, β/k = 8.6 
μK,  γ/k = 860 μK. 
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Fig. S13D:  Dynamics of the Wu-Austin Hamiltonian in the wide-band low-temp. limit 
(ω1/ω0 = 0.94, kT/0ωh  = 1.46), showing the change in the average kinetic energy in modes 1 
(the mode undergoing Fröhlich condensation), 2, 3, 12, and 25 for Z = 25 system oscillators; 
the instantaneous kinetic energy in modes 1 and 2 is also shown (thin lines).  Other 
parameters are: linear frequency dispersion, ZB = 430 bath modes at T = 300 K (hence ω0 = 
300 cm-1, ω1 = 282 cm-1), ZI = 200 source modes at TI = 400000 K, α/k = 86 μK, β/k = 216 
μK,  γ/k = 430 μK. 
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Fig. S13E:  Dynamics of the Wu-Austin Hamiltonian in the wide-band low-temp. limit 
(ω1/ω0 = 0.94, kT/0ωh  = 1.46), showing the change in the average kinetic energy in modes 1 
(the mode undergoing Fröhlich condensation), 2, 3, 12, and 25 for Z = 25 system oscillators; 
the instantaneous kinetic energy in modes 1 and 2 is also shown (thin lines).  Other 
parameters are: linear frequency dispersion, ZB = 430 bath modes at T = 300 K (hence ω0 = 
300 cm-1, ω1 = 282 cm-1), ZI = 200 source modes at TI = 400000 K, α/k = 86 μK, β/k = 216 
μK,  γ/k = 860 μK. 
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Kinetic-energy distribution function for strong Fröhlich condensates derived from the Wu-
Austin Hamiltonian 
 
 How the Wu-Austin Hamiltonian, with Nose-Hoover thermostats depicting the 
thermal baths, anticipates but does not achieve coherent motion is demonstrated in Figure 
S14.  Here, the probability of finding mode 1 with a kinetic energy ratio of E/Eav is shown, 
where E is the instantaneous kinetic energy and Eav is the average kinetic energy of the mode 
in the condensate.  Shown for reference are the probability functions expected for a canonical 
energy distribution and for coherent motion.  While weak condensates (not shown) lead to 
nearly canonical energy distributions, the strong condensates depicted in the figure all have 
probability distributions akin to that expected for coherent motion at low energy but at high 
energy distorted canonical-like distributions are actually found.  Across the whole of the 
parameter space, we thus see that the Wu-Austin Hamiltonian does not lead to coherent 
Fröhlich condensates. 

 
Fig. S14:  Kinetic-energy distribution of the mode undergoing Fröhlich condensation  as 
depicted by the Wu-Austin Hamiltonian in the wide-band low-frequency limit (ω1/ω0 = 0.12, 

kT/0ωh  = 1/15), the narrow-band low-frequency limit (ω1/ω0 = 0.76, kT/0ωh  = 1/15), and 
the narrow-band high-frequency limit (ω1/ω0 = 0.94, kT/0ωh  = 1.46); for reference, standard 
classical canonical and coherent kinetic-energy profiles are also provided, where E is the 
kinetic energy and Eav is the average kinetic energy.  The simulation conditions are: linear 
frequency dispersion,  Z = 25 system oscillators, ZB = 430 bath modes at T = 300 K, ZI = 200 
source modes at TI = 96000 K (wide band, high temp.) 400000 K (narrow band, high temp.) 
and 4000000 K (narrow band, low temp.), with  α/k = 150 μK, β/k = 150 μK,  γ/k = 750 μK 
(wide band, high temp.), α/k = 53 μK, β/k = 75 μK,  γ/k = 375 μK (narrow band, high temp.) 
and α/k = 860 μK, β/k = 8.6 μK,  γ/k =  860 μK (narrow band, low temp.). 
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H.   Minimum system temperature required to attain a condensation index of η = 
0.9 from the basic Fröhlich model 

 

 

Mesquita et al. (17, 18) found that the coherence lifetime increased sharply in the 

strong-condensate regime, with in our language η > 0.9 typically required.   Of the 29040 

calculations performed for the construction of Figs. S1-S8 (see Supporting Information) 

depicting the general solution to Fröhlich’s, the minimum calculated system temperature TS 

found whenever η > 0.9 occurs for the widest bands (ω1/ω0 = 0.04) and the strongest sources 

(s/φ = 100) and is sensitive to the number of oscillators Z.  While the minimum value of TS 

tends to decrease with increasing Z as more modes are available to be drained to form the 

condensate, the greater density of available low-frequency vibrations has the opposite effect; 

the resulting calculated minimum TS is shown as a function of Z for cosine, linear, and 

Gaussian dispersion in Supporting Information Figure S15.  For the cosine dispersion 

appropriate for a linear chain of coupled oscillators as envisaged in the Orch OR proposal, the 

competing effects result in a minimum system temperature for coherence of 1560 K for ca. 19 

≤ Z ≤ 46.   For linear dispersion, the minimum system temperature is 750 K for ca. 45 ≤ Z ≤ 

600, the lower temperature being facilitated by the lower density of states in the vicinity of 

ω1.  For Gaussian dispersion the coherence is most enhanced, the minimum system 

temperature required being 460 K whenever 600 ≤ Z ≤ at least 10000.  In the low-temperature 

limit originally considered by Mesquita et al. pertinent to Fröhlich condensates involving 

protein amide-I vibrations, our simulations in Supporting Information Fig. S13 indicate that 

the condensing mode attains an energy corresponding to a temperature of order 105 to 107 K, 

indicating that the envisaged biological process is not feasible. 
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The simulations of Mesquita showed Fröhlich condensation under a modified Wu-

Austin Hamiltonian in which input decoherence is suppressed through the replacement of the 

explicit mechanical energy source with a general macroscopic term.  Coherent condensates 

were produced for η > 0.9.  Here we take the basic Fröhlich model and determine the lowest 

system temperature available anywhere in the parameter space for different numbers of 

system modes Z and dispersion types.  This temperature is very high for all dispersion types 

but is largest for a linear chain of oscillators showing cosine-type dispersion. 

 
 

Fig. S15:  Minimum system temperature required to reach the high condensation index of η = 
0.9.  These are obtained considering all data evaluated on the four-dimensional grids with s/φ 
= 0, 0.010, 0.028, 0.077, 0.22, 0.76, 1.67, 4.64, 12.9, 35.9, and 100; χ/φ = 0, 0.00010, 
0.00028, 0.00077, 0.0022, 0.0060, 0.046, 0.13, 0.36, and 1; kT/0ωh  = 0.010, 0.022, 0.046, 
0.10, 0.22, 0.46, 1.0, 2.2, 4.6, 10.0; and ω1/ω0 = 0.04, 0.12, 0.20, 0.28, 0.36, 0.44, 0.52, 0.60, 
0.68, 0.76, 0.84.0.92 using cosine, linear, or Gaussian dispersion for Z in the range of 2 to 
10000 oscillators 
 


