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SUPPLEMENTARY INFORMATION, Text S1 
PI3K-dependent crosstalk interactions converge with Ras as quantifiable 
inputs integrated by Erk 
Chun-Chao Wang, Murat Cirit, and Jason M. Haugh 

I. Kinetic Model 

I.A. Receptor and PI3K Activation 
I.A.1 PDGF Receptor Binding/Dimerization/Trafficking 
 The starting point for the kinetic model of the PDGF receptor signaling network was our 
previous model of receptor and PI3K activation, which was validated by quantitative 
experiments in the same cells as used here (Park et al, 2003; Schneider and Haugh, 2005).  
Definitions and base values of the relevant rate constants are listed in Table S1.  Defining R, C1, 
and C2 as the density of free receptors, 1:1 receptor-ligand complexes, and functional receptor 
dimers in the membrane, respectively, and [L] as the concentration of ligand (PDGF) added at 
time t = 0, 
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Here, KD,L is the dissociation constant characterizing 1:1 complex formation (fast on-off 
kinetics), Vs is the receptor insertion rate, and the rate constants kx, k-x, kt, and ke characterize 
receptor dimerization, dimer uncoupling, constitutive membrane turnover, and induced 
endocytosis of receptor dimers, respectively.  Receptor densities are nondimensionalized by 
scaling R, C1, C2, and Vs by the initial surface receptor expression level, R0; substituting its 
definition from above and simplifying, 
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The output of this model is the fraction of receptors in dimers as a function of time, given by 
2c2(t).  The parameter values were taken from the papers cited above, except for the basal 
receptor turnover rate constant kt. 
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I.A.2 PI3K Recruitment and 3’ PI Accumulation 
 We next present a model of PI3K recruitment and 3’ PI production.  In keeping with the 
notation used previously (Schneider and Haugh, 2005; Haugh, 2006), we refer to the fraction of 
the PI3K enzyme recruited as ePI3K, and the dimensionless 3’ PI messenger density is given by 
m3PI.  The rate of 3’ PI accumulation in response to PDGF in fibroblasts is limited by 3’ PI 
turnover, not the recruitment of PI3K (Park et al, 2003; Schneider and Haugh, 2004).  Hence, it 
is justified to assume pseudo-equilibrium for PI3K binding: 
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The dimensionless parameters αPI3K and κPI3K are cast in terms of Amem, the surface area of the 
plasma membrane, EPI3K,Tot, the total number of PI3K molecules per cell, Vcyt, the volume of the 
cytosol, and KD,PI3K, the equilibrium dissociation constant for the receptor/PI3K interaction.  The 
equation above is rearranged to obtain 
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 The stimulated accumulation of 3’ PI lipids, with the normal basal level subtracted, is 
modeled in dimensionless form as follows (Park et al, 2003; Schneider and Haugh, 2005; Haugh, 
2006): 
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The base values of the parameters for this portion of the model (αPI3K, κPI3K, and k3PI), listed in 
Table S1, were assigned values that are quantitatively consistent with the data in our previous 
papers on PI3K signaling and hence were not subject to parameter fitting based on the new data 
presented in this paper. 

Parameter Description Value 

KD,L PDGF single-site dissociation constant 1.5 nM 
kxR0 Dimerization rate constant 0.3 min-1 
k-x Dimer uncoupling rate constant 0.07 min-1 
ke Dimer endocytosis rate constant 0.2 min-1 
kt Basal receptor turnover rate constant 0.005 min-1 

αPI3K Receptor/PI3K expression ratio 80 

κPI3K Dimensionless receptor-PI3K dissociation constant 0.3 

k3PI 3’ PI turnover rate constant 1.0 min-1 

Table S1: Kinetic model parameter definitions and values, PDGF receptor/PI3K module. 
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I.B. Ras/Erk Pathway 
 Based on our Ras-GTP and phospho-Erk data, the model at least needs to include the 
following processes: (i) recruitment of Ras-guanine nucleotide exchange factor (GEF) activity 
from the cytoplasm, controlled by the densities of activated receptors and 3’ PI, mediating an 
increase in Ras-GTP level; (ii) activation of Raf and other MEK kinases, controlled by the 
densities of Ras-GTP and 3’ PI; (iii) dual phosphorylation/dephosphorylation of MEK and of 
Erk; and (iv) negative feedback loops mediated by Erk affecting desensitization of GEF 
recruitment and up-regulation of MKP-1 expression.  These aspects of the model are discussed 
below.  Most of the Ras/Erk pathway parameters were estimated using a Monte-Carlo algorithm, 
described in detail in Part II of this Supplement.  This strategy does not identify a “best-fit” value 
for each parameter but rather an ensemble of parameter sets that fit the data almost equally well.  
Definitions of the kinetic parameters and statistics concerning their estimation are summarized in 
Table S2. 

I.B.1 GEF Recruitment and Ras-GTP Accumulation 
 For simplicity we do not model explicitly the various adaptor proteins involved in PDGF 
receptor-mediated Ras-GEF recruitment, such as Grb2, Shc, and Gab-1.  Fractional GEF 
recruitment, eGEF(t), is assumed to respond rapidly to changes in the density of receptor dimers, 
c2(t), and 3’ PI lipids, m3PI(t), according to the following approximate equilibrium-binding 
relation. 
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eGEF (t) = KGRc2(t) + KGPm3PI (t)[ ] fGEF (t) " eGEF (t)[ ] . 

Other functions of c2 and m3PI on the right-hand side of this equation were evaluated (e.g., adding 
a dependence on the product of c2 and m3PI); not surprisingly, the nature of the experimental data 
does not adequately constrain the model to the extent that significant deviations from the 
assumed linear model are favored.  Rearranging, 
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The dimensionless affinity parameter KGR (GEF/Receptor) is analogous to the parameter 
grouping 2αPI3K/(1+κPI3K) for receptor-mediated PI3K recruitment, described under section I.A.2.  
The model considers that 3’ PI lipids might present or recruit independent binding sites for GEF, 
characterized by the dimensionless affinity constant KGP (GEF/Phosphoinositide).  The final 
component of the GEF recruitment model is the function fGEF(t), representing the fraction of the 
intracellular GEF available for recruitment, which is subject to feedback from MEK/Erk (section 
I.B.3). 
 The modeling of Ras-GTP accumulation is treated as in past models (Haugh and 
Lauffenburger, 1997; Haugh, 2002).  Defining MRas-GTP and MRas,Tot as the area densities of 
membrane-associated Ras-GTP and total Ras (GTP- and GDP-bound), respectively, 
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The rate constants k0, kGEF, and kGAP characterize basal GDP/GTP exchange, maximal receptor-
mediated activation of GEF activity, and GTP hydrolysis catalyzed by GTPase-accelerating 
proteins (GAPs), respectively.  We define the dimensionless mRas(t) by analogy to m3PI(t) in that 
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mRas = 0 when eGEF = 0 (representing the basal state) and mRas = 1 when eGEF = 1.  Manipulation of 
the equation above gives 
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In this particular model, we do not consider receptor-mediated activation of GTPase-accelerating 
protein (GAP) activity, but at least in rough terms one could in any case consider the gain 
parameter Γ to represent the ratio of GEF/GAP activities under maximal stimulation conditions. 
 This portion of the model was parameterized as follows.  Based on previous experiments 
(Kaur et al, 2006), it is known that only a small fraction of Ras in our cells is converted to the 
GTP-bound form, consistent with Γ << 1 and mRas ≈ eGEF at steady state; hence, Γ = 0.1 was 
chosen as an arbitrary, order-of-magnitude estimate.  Ras-GTP levels peak at t ~ 3 minutes or 
earlier, and the temporal resolution of our kinetic data does not allow for accurate estimation of 
the effective rate constant kRas.  A sufficiently high value of 1 min-1 was therefore assigned.  The 
values of the 2 parameters characterizing GEF recruitment (KGR, KGP) were subject to our 
parameter estimation algorithm. 

I.B.2 Ras- and PI3K-dependent Activation of the Erk cascade 
 Ras and PI3K are responsible for activating serine-threonine kinases that activate MEK, 
which in turn activates Erk.  There are multiple isoforms of Raf (notably, Raf-1 and B-Raf) and 
also other MEK kinases (e.g., Pak, PDK-1).  In the minimal mathematical description, we 
identify and model two modes of activation at this level: 

1. Mode 1 (x1): Ras-dependent, PI3K-independent.  This is the only mode leading to 
MEK/Erk activation in PI3K-inhibited cells. 

2. Mode 2 (x2): Ras-independent, PI3K-dependent.  This accounts for MEK/Erk activation 
in S17N Ras-expressing cells. 

The dimensionless variables x1 and x2 are assumed to be independent; that is, they represent 
either distinct enzymes or activation of the same enzyme with most of it remaining in the 
inactive state.  We also analyzed a more complex model containing an additional MEK kinase 
activity, x3, which was both Ras- and PI3K-dependent.  In that case, the algorithm generally 
chose parameters so as to marginalize the influence of x3 downstream; hence, we removed this 
pathway from the model. 
 MEK and Erk are successively activated via dual phosphorylation mechanisms that are 
thought to be distributive (nonprocessive); i.e., MEK must be engaged by a MEK kinase in 
separate encounters to be phosphorylated on its two activation sites, and likewise for Erk 
phosphorylation by MEK.  The dual phosphorylation mechanism has interesting theoretical 
properties that have been characterized by other groups over the years (Ferrell, 1996; Ferrell, 
2002; Markevich et al, 2004; Wang et al, 2006; Qiao et al, 2007), and so we wish to maintain 
that character without sacrificing model simplicity (in terms of the number of adjustable 
parameters).  We define y, yp, and ypp as the fractions of MEK that are unphosphorylated, mono-
phosphorylated, and dually phosphorylated, respectively, and z, zp, and zpp as the corresponding 
fractions of Erk.  There are also phosphatases, yph and zph, which dephosphorylate MEK and 
Erk, respectively. 
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 Our model assumes quasi-steady state for the enzyme-substrate complexes (Michaelis-
Menten kinetics).  A notable assumption here is that the substrates are in excess relative to the 
enzymes; it is fully recognized that this assumption might not be strictly satisfied inside the cell, 
and this aspect of the model can be refined as additional data come to light.  We do allow 
competition for common enzymes; unphosphorylated and mono-phosphorylated forms of MEK 
and Erk compete with each other for the upstream kinase, and the phosphorylated forms compete 
with each other for binding to the corresponding phosphatase.  Further, active MEK kinase can 
be saturated by inactive MEK so as to reduce the rate of MEK kinase dephosphorylation, and 
saturation of active MEK by inactive Erk reduces the rate of MEK dephosphorylation.  The 
quasi-steady state expressions for the enzyme-substrate complexes, denoted by (enzyme • 
substrate), are as follows. 
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The dimensionless parameters 
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 are Michaelis constants, scaled by the total MEK 
concentration, characterizing the first and second phosphorylations of MEK by enzyme xi; 
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 are the corresponding Michaelis constants for Erk phosphorylation by active MEK, 
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˜ K M ,yph1
 and 

! 

˜ K M ,yph 2
 are the corresponding Michaelis constants for MEK dephosphorylation, and 

! 

˜ K M ,zph1
 and 

! 

˜ K M ,zph 2
 are the corresponding Michaelis constants for Erk dephosphorylation. 

 The conservation equations for the MEK kinases assume that these enzymes are mostly 
maintained in their inactive states, and that their deactivation is far from saturation (pseudo-first 
order).  As noted above, however, we account for the potential saturation of each active MEK 
kinase by inactive MEK.  It is noted that the PI3K-dependent mechanism could rightly be 
modeled as a sequence of two or more steps, because unlike Ras-GTP, 3’ PIs are probably not 
capable of directly interacting with the MEK kinase(s) (with the exception of PDK-1).  To 
reduce the number of parameters, we lump these processes into a single, rate-limiting step for x2; 
however, we allow for partial saturation of this mechanism with respect to the 3’ PI level, by 
including a saturation parameter, Kx2.  Cast in terms of dimensionless concentrations, the rate 
equations for the MEK kinases are 
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For MEK, the conservation equations are 
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As shown in Eqs. S10 & S11, the model allows x1 and x2 to possess distinct catalytic properties 
with respect to MEK phosphorylation.  The parameters 
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abundance of the ith MEK kinase mode at maximal stimulation as well as its kcat values for the 
first and second phosphorylations of MEK, respectively.  They are scaled by the total 
concentration of MEK and therefore have units of inverse time.  Corresponding parameters are 
specified for the single MEK phosphatase (yph), which is assumed to have constant abundance, 
and for Erk phosphorylation/dephosphorylation.  The rate expressions for Erk phosphorylation 
are 
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! 

zp =1" z " zpp .  (Eq. S15) 

The function eph(t) represents the dimensionless abundance of the dual-specificity phosphatase 
that dephosphorylates Erk and thus counteracts active MEK; this phosphatase is subject to up-
regulation through a MAPK-dependent negative feedback loop (section I.B.3 below). 
 Even with a fair number of parameter-reducing simplifications, modeling the Erk cascade 
introduces a relatively large number of adjustable rate constants (23).  This number may be 
reduced if one or more of the enzymes can be assumed to operate far from saturation (
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˜ K 
M

 values 
>> 1). 

I.B.3 Negative Feedback Loops Eliciting GEF Desensitization and Up-regulation of MKP-1 
 These negative feedback loops are embodied by the functions fGEF(t) and eph(t), as 
introduced in sections I.B.1 and I.B.2, respectively.  GEF desensitization, which involves Erk-
dependent hyperphosphorylation, affects the fraction of GEF available, fGEF(t). 
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This expression allows for potentially switch-like or a more graded transition (Hill coefficient n 
≥ 1) as well as fast or slow “reset” kinetics.  As shown in Table 2, one could set n = 1 without 
affecting the model output significantly.  The rate constant kFB,f defines the time scale associated 
with the feedback loop, and Kf defines its gain (maximum ratio of desensitization and reset 
frequencies). 
 For eph, the model needs to account for the observation that MKP-1 appears with a delay 
of ~ 15 minutes.  Thus, we impose a variable w, possibly representing a transcription factor 
activity, which builds up slowly and switches on MKP-1 expression. 
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These two Erk-dependent feedback loops introduce 9 additional parameters. 

I.C. Modeling Molecular Perturbations Affecting Erk Phosphorylation 
 PI3K inhibition is modeled by setting m3PI = 0, which affects the Ras/Erk pathway both 
upstream and downstream of Ras.  MEK inhibition, which affects Ras-GEF desensitization, is 
modeled by setting fGEF = 1.  S17N Ras is modeled by setting mRas = 0.  Chronic activation by 
phorbol ester is modeled by assuming that MEK activation is saturated (ypp set to 1). 
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Parameter Description Minimum Lower 
Quartile Median Upper  

Quartile Maximum 

KGR Affinity constant, GEF/receptor binding 102 394 495 640 1730 

KGP Affinity constant, 3’ PI-dependent GEF binding 0.00266 3.47 5.09 6.51 32.7 

kRas Characteristic rate constant, Ras-GTP loading   1/min *   

Γ Maximally stimulated GEF/GAP activity ratio   0.1 *  
 

kd,x1 MEK kinase deactivation rate constant (Ras-activated) 0.203/min 0.561/min 0.745/min 1.21/min 12.9/min 

kd,x2 MEK kinase deactivation rate constant (PI3K-activated) 0.305/min 1.77/min 2.85/min 11.2/min 282/min 

Kx2 Saturation constant, PI3K-dependent MEK kinase activation 0.251 5.25 6.77 10.2 31.0 

! 

˜ 
V 

max,x11
˜ 
K 

M ,x11
 Cat. efficiency, MEK --> pMEK (Ras-activated) 0.0579/min 0.516/min 1.18/min 1.62/min 71.3/min 

! 

˜ 
K 

M ,x11
 Mich. constant, MEK --> pMEK (Ras-activated) 0.343 20.1 30.3 250 2570 

! 

˜ 
V 

max,x21
˜ 
K 

M ,x21
 Cat. efficiency, MEK --> pMEK (PI3K-activated) 0.0302/min 0.236/min 0.405/min 0.907/min 353/min 

! 

˜ 
K 

M ,x21
 Mich. constant, MEK --> pMEK (PI3K-activated) 0.0568 13.7 21.6 203 3710 

! 

˜ V 
max,yph1

˜ K M ,yph1
 Catalytic efficiency, pMEK --> MEK 5.6x10-4/min 1.65/min 4.40/min 14.7/min 483/min 

! 

˜ K M ,yph1
 Michaelis constant, pMEK --> MEK 0.573 23.0 44.0 97.8 445 

! 

˜ 
V 

max,x12
˜ 
K 

M ,x12
 Cat. efficiency, pMEK --> ppMEK (Ras-activated) 0.115/min 3.54/min 4.71/min 15.5/min 146/min 

! 

˜ 
K 

M ,x12
 Mich. constant, pMEK --> ppMEK (Ras-activated) 2.81 18.6 45.5 114 758 

! 

˜ 
V 

max,x22
˜ 
K 

M ,x22
 Cat. efficiency, pMEK --> ppMEK (PI3K-activated) 0.0318/min 1.09/min 2.41/min 9.45/min 77.6/min 

! 

˜ 
K 

M ,x22
 Mich. constant, pMEK --> ppMEK (PI3K-activated) 0.876 9.59 15.7 31.6 878 

! 

˜ V 
max,yph 2

˜ K M ,yph 2
 Catalytic efficiency, ppMEK --> pMEK 0.233/min 4.20/min 6.77/min 9.07/min 52.2/min 

! 

˜ K M ,yph2
 Michaelis constant, ppMEK --> pMEK 1.05 7.99 12.7 42.5 254 

! 

˜ V 
max,y1

˜ K M ,y1
 Catalytic efficiency, Erk --> pErk 0.862/min 6.57/min 11.8/min 52.8/min > 104/min 

! 

˜ K M ,y1
 Michaelis constant, Erk --> pErk  0.0146 9.91 31.9 45.5 890 

! 

˜ V 
max,zph1

˜ K M ,zph1
 Catalytic efficiency, pErk --> Erk 1.1x10-4/min 0.167/min 0.451/min 1.11/min 63.2/min 

! 

˜ K M ,zph1
 Michaelis constant, pErk --> Erk 0.275 8.27 14.0 37.0 167 
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! 

˜ V 
max,y2

˜ K M ,y2
 Catalytic efficiency, pErk --> ppErk 0.669/min 8.16/min 31.9/min 66.9/min 7730/min 

! 

˜ K M ,y2
 Michaelis constant, pErk --> ppErk  0.0481 4.21 8.81 80.7 944 

! 

˜ V 
max,zph 2

˜ K M ,zph 2
 Catalytic efficiency, ppErk --> pErk 0.0263/min 0.122/min 0.228/min 0.493/min 13.7/min 

! 

˜ K M ,zph 2
 Michaelis constant, ppErk --> pErk 1.10 9.98 31.5 195 797 

kFB,f Feedback rate constant, GEF desensitization 0.104/min 0.763/min 0.976/min 1.56/min 23.7/min 

Zf Dimensionless threshold, GEF desensitization 0.00829 0.146 0.272 0.507 2.50 

n Hill coefficient, GEF densensitization 1.00 † 1.02 1.03 1.05 1.48 

K,f Gain coefficient, GEF desensitization 1.04 3.16 3.76 5.17 16.6 

kw Delay rate constant, MKP up-regulation 0.00646/min 0.0187/min 0.0333/min 0.0914/min 0.478/min 

kFB,ph Feedback rate constant, MKP up-regulation 0.0375/min 0.998/min 2.34/min 3.69/min 60.6/min 

Wph Dimensionless threshold, MKP up-regulation 0.107 0.248 0.385 1.11 12.3 

p Hill coefficient, MKP up-regulation 1.10 † 1.76 1.98 2.56 24.7 

Kph Gain coefficient, MKP up-regulation 1.35 3.08 4.64 25.1 8055 

Table S2: Kinetic model parameters, Ras/Erk pathway module.  A Monte-Carlo algorithm was used to estimate all but two of 
these parameter values, producing an ensemble of parameter sets that fit the data set almost equally well.  See Part II of this 
Supplement for more details.  * These two parameters were fixed.  † The Hill coefficients n and p were constrained to be no lower than 
1.  Highlighted values are deemed arbitrarily high (yellow) or low (cyan). 
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II. Parameter Estimation 

II.A. Metropolis Algorithm 
II.A.1 Description of the Algorithm 
 The values of all but 2 of the 36 parameters listed in Table S2 were subject to a Monte 
Carlo estimation routine based on the Metropolis algorithm (Metropolis et al, 1953).  The 
algorithm was implemented in MATLAB (MathWorks, Natick, MA), adapted from code 
provided by Tim Elston (Department of Pharmacology, UNC-Chapel Hill) (Violin et al, 2008).  
The following data sets were used to constrain the model: dually phosphorylated Erk under 
DMSO control, Ras-inhibited, and PI3K-inhibited conditions, Ras-GTP under control, PI3K-
inhibited, and MEK-inhibited conditions, and MKP expression under control and Ras-inhibited 
conditions.  In order to set all of the data on a similar scale, the mean of the normalized data 
values under control conditions, 1 nM PDGF stimulation, were set to 1.  Later, the data presented 
in Supplementary Fig. S3 were incorporated to constrain the saturation level of ppErk 
(stimulated by phorbol ester); those data were aligned with the other ppErk data by minimizing 
the sum of the squared deviations between the corresponding time points in control cells 
stimulated with 1 nM PDGF. 

The algorithm works as follows. 
1) An initial set of parameters is chosen.  For the exponents n and p (Table S2), which 
were constrained to be no less than 1, the corresponding parameter value in the algorithm 
was added to its lower limit (e.g., n = 1 + x). 
2) The dimensionless model output is computed using the stiff solver ode15s. 
3) The model outputs based on the current parameter set are modified by alignment 
factors to directly compare with data, one each for ppErk, Ras-GTP, and MKP 
expression.  The values of these three factors, aj, are chosen such that the sum of squared 
deviations (SSD) for each of the three data types j (ppErk, Ras-GTP, MKP-1), comparing 
measured and calculated values at each data point i, 

! 

SSDj = ymeasured ,ij " a j ymodel, ij( )
2

i

# , 

is minimized.  This step is done by systematically subdividing the range of possible 
values until each SSDj can no longer be reduced by more than 0.1%.  For example, for a 
dimensionless variable between 0 and 1 and corresponding data with a peak value greater 
than 1 in arbitrary units, we know that aj > 1, in which case we know that  0 < 1/aj < 1.  
The minimum SSD values thus obtained are saved and used to evaluate the closeness of 
fit, as described in the following section. 
4) A new set of parameters is determined from the old set as follows. 

! 

k
i,new

= k
i,old

1+" randn( ) , 

where ki is one of the model parameters, and randn is a random number drawn for each 
parameter from a normal distribution centered on zero with σ = 1.  Thus, α is a parameter 
of the algorithm that governs how much the parameter values tend to change between 
iterations.  Its value affects the efficiency of the algorithm, and after extensive 
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experimentation we concluded that a value of α = 0.05 is close to optimal for this 
application.  That value was used throughout the analysis reported here.  If any of the 
new parameters is below 10-4 or greater than 104, the new value is thrown out, and 
another value is drawn based on the old value. 
5) Steps 2-4 are repeated using the new parameter set, and its SSDj are evaluated.  If 
defined criteria are satisfied (see section II.A.2 below), the new parameter set is accepted; 
otherwise, it is thrown out, and the previous set is used again. 
6) The procedure is repeated until the desired number of accepted parameter sets is 
achieved.  All of the accepted parameter sets are saved in a matrix for further analysis. 

II.A.2 Generation of a Parameter Ensemble 
 The strategy for using the algorithm was as follows.  First, we established a suitable 
initial parameter set.  This was done by randomly varying the parameters as described above 
until a weighted sum of SSD values converged to a near-minimal value; in this exercise, it was 
confirmed that different starting guesses resulted in approximately the same value of the 
weighted SSD.  Once a reference parameter set was established, it was used as the starting point 
for an extensive search of the parameter space, with the goal of collecting parameter sets that fit 
the data nearly as well as or better than the initial parameter set.  A parameter set was selected if 
it produced a SSD value less than 1.5 for each of the following data subsets: ppErk with DMSO, 
ppErk in S17N Ras cells, ppErk in LY294002-treated cells, Ras-GTP measurements, MKP-1 
measurements, and ppErk with DMSO or PMA.  After some experimentation, it was found that 
an additional criterion was needed to ensure that the ppErk, S17N Ras data for the lowest PDGF 
concentration (30 pM) was fit adequately, and hence the parameter sets also had to have a SSD < 
0.35 for those particular data points.  Finally, to improve the quality of fit of the PI3K-inhibited 
ppErk data, the parameter sets obtained were sorted according to their SSD value for those data, 
and sets with SSD < 1.0 for that subset of data were selected.  Statistics for this ensemble, 
representing 10,000 of the “best” parameter sets (out of > 60,000 initially chosen), are 
summarized in Table S2. 

II.B. Ensemble Averaging and Analysis 
 With the ensemble of parameter sets saved as a matrix, MATLAB was used to recalculate 
the model output for each parameter set and store those values in a larger matrix.  For each 
experimental condition and time point, an ensemble mean and standard deviation (n = 10,000) 
were computed, and these values were used to compare the model with the experimental data in 
Fig. 7.  To predict the outcomes of certain perturbations, namely the inhibition of PI3K-
dependent crosstalk to Ras-GEF or to MEK (Fig. 9), the corresponding changes in the parameter 
values (KGP = 0 or 

! 

˜ V 
max,x21

= ˜ V 
max,x22

 = 0, respectively) were made in each of the 10,000 parameter 
sets, and the mean and standard deviation of the model output were recomputed. 
 The analysis of MEK phosphorylation presented in Fig. 8A was carried out as follows.  
The maximum phosphorylation of MEK by pathway i (i = 1 for Ras-dependent, i = 2 for PI3K-
dependent) on site j (j = 1 or 2) is characterized by the ratio of catalytic efficiencies, 

! 

Cxij =
˜ V 

max,xij
˜ K M ,xij

˜ V 
max,yphj

˜ K M ,yphj

. 
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Fig. 8A shows scatter plots of maximum PI3K-dependent phosphorylation of site 1 (Cx21) versus 
maximum Ras-dependent phosphorylation of site 1 (Cx11) and of maximum PI3K-dependent 
phosphorylation of site 2 (Cx22) versus maximum Ras-dependent phosphorylation of site 2 (Cx12), 
with each parameter set in the ensemble represented as a dot.  The MEK activation comparator 
(MAC), referred to in the main text, incorporates the phosphorylation of both MEK sites and was 
calculated as follows.  Suppose that the MEK kinases and phosphatase are far from saturation 
and that only one of the two MEK activation pathways is present and maximally activated (xi = 
1).  If such a system were allowed to reach steady state, Eqs. S10-S12 reduce to 

! 

yp = Cxi1y; ypp = Cxi2yp;

y + yp + ypp =1;

ypp =
"i

1+"i

; "i =
Cxi1Cxi2

1+ Cxi1

.

 

The MAC ratio compares the capacity for activation of ypp thus obtained for the PI3K-dependent 
pathway to that of the Ras-dependent pathway, according to 

! 
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x21
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x22

1+ C
x21
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The impact of the negative feedback affecting Ras-GEF recruitment is assessed by reducing the 
values of Cx11 and Cx12 by the same factor. 
 The analysis of Ras-GEF recruitment presented in Fig. 8B was carried out as follows.  It 
is apparent from Eq. S6 that GEF recruitment, as a fraction of the amount available, is 
determined by the magnitude of 

! 

K
GR
c
2
(t) + K

GP
m
3PI
(t) 

A balanced comparison of the two terms in this sum, representing the PI3K-independent and 
PI3K-dependent GEF recruitment modes, is complicated by the fact that the dimensionless 
variables c2 and m3PI are normalized differently.  However, in the limit of low PDGF 
concentrations (with ePI3K << 1), m3PI is proportional to c2 at quasi-steady state (Eq. S4 & S5), 
with 

! 

m
3PI

= e
PI 3K

"
2#

PI 3K

1+$
PI 3K

c
2
 (ePI3K <<1, quasi-steady state). 

For the parameters used here, the proportionality constant is equal to 123.  Fig. 8B shows a 
scatter plot of PI3K-dependent GEF recruitment, expressed as the value of KGP, versus the 
corresponding PI3K-independent GEF recruitment, expressed on a comparable scale as the value 
of KGR divided by 123; each parameter set in the ensemble is represented as a dot.  The GEF 
recruitment comparator (GRC) compares these contributions in terms of a ratio, 

! 

GRC =
2"

PI 3K

1+#
PI 3K

$ 

% 
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' 

( 
) 
K
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Figure S1. Specificity of PI3K inhibition.  The PI3K inhibitor LY294002 is known to have off-target 
effects.  LY303511 has the same or similar pharmacological profile with respect to those targets but 
does not inhibit PI3K.  The results shown, representative of two independent experiments, confirm that 
LY303511 does not significantly affect Erk phosphorylation, stimulated by PDGF (1 nM) and quantified 
by immunoblotting (phospho-Erk/total Erk), and that another PI3K inhibitor yields similar effects as 
LY294002. 



 
 
 
 
 
 
 
 

 
 
 
Figure S2. Saturation of the Erk cascade using phorbol ester.  Cells were pretreated for 15 minutes with 
DMSO only (black symbols) or 200 nM PMA (red symbols), prior to stimulation with PDGF-BB: 30 
pM (triangles), 100 pM (squares), or 1 nM (circles).  Erk phosphorylation was determined in duplicate 
by quantitative immunoblotting (phospho-Erk/total Erk), and the values are expressed as mean ± s.e.m. 
(n = 2.  The error bars are shown for illustrative purposes only; they are equivalent to the range divided 
by 1.41).  The results indicate that Erk phosphorylation is close to saturation in PMA treated cells.  In 
the cells not treated with PMA, the PDGF-stimulated response is 80-90% of the apparent saturation 
level.  The solid curves represent the corresponding ensemble means for the kinetic model, and the 
dashed curves are mean ± s.d. (n = 10,000). 
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Figure S3. Data normalization for biological (day-to-day) variability.  The normalization procedure described under Materials and 
Methods is demonstrated on the Erk phosphorylation data for the DMSO control, Fig. 1C&E.  The top row shows the unaligned data 
(normalized already by total Erk).  Different colors mark measured time courses from independent experiments.  Note that, in this 
case, the Erk phosphorylation values from one of the experiments (Series 5) are much lower than the rest.  The bottom row shows the 
data after our normalization protocol.  The values from each day of experiments are multiplied by a scaling factor so as to minimize 
the average coefficient of variation for the control, 1 nM PDGF time course.  Those scaling factors are applied to the lower PDGF 
concentrations shown here and also the rest of the lysates collected on the same day (in this case, from cells treated with LY294002 
and from cells treated with PD098059). 
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