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Material and methods

Overview

Data on fertility rates (total number of offspring produced per year), age of first

reproduction (age at first conception) and maximum lifespan (both from field data or

in captivity) were collected from the literature. From these data, rmax was obtained by

solving Cole’s (1954) equation numerically (using Mathematica 5.0.1). Brain and

body mass data was taken from our large compilation. In total, data on 536 eutherian

mammals and 399 avian species have been compiled, but 11 bird species were

excluded from analyses due to very low values of recorded maximum lifespan

compared to congeneric species. All variables were loge transformed before analysis,

and statistical tests were parametric, using JMP 5.0.2. As we are mainly interested in

the significance of a relationship rather than in the value of the slope of the

regression line, least-squares regressions were applied, although major axis

regressions would give more appropriate estimations of the slope of the lines in

interspecific datasets (Martin & Barbour, 1989).
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In mammals, species were defined as precocial if the young open their eyes

at birth or shortly thereafter. Most families of Chiroptera produce one single, large

offspring after a long gestation, but this opens its eyes only after some days. Thus, all

Chiroptera are omitted in the analyses where the data are split by development

mode, but included in the analysis of the combined dataset. In birds, development

modes were defined according to Ricklefs and Starck (1998): alticials, semi-altricials,

semi-precocials and precocials.

To control for the effects of phylogenetic relationships, the method of

calculating independent contrasts was applied using the PDAP:PDTree package

(Garland et al., 1992; Garland et al., 1993) of the Mesquite computer program

(Maddison & Maddison, 2007). Polytomies in the phylogeny were resolved arbitrarily

to branches with length zero. Although this results in a sligth overestimation of type I

error rates (Purvis & Garland, 1993), in practice differences to the algorithm used in

CAIC (Purvis & Rambaut, 1995) are negligible if the number of species in the tree is

large. The regression lines were constrained to pass through the origin (Garland et

al., 1992).

To analyse the distribution of relatively large-brained taxa across mammals

and birds, residuals from a least-squares regression of brain mass vs. body mass

were calculated. Discrete data were obtained by grouping these residuals according

to percentiles. Then, retention indices of relative brain size of both mammals and

birds were calculated in MacClade 4.07 (Maddison & Maddison, 2005).

Mammals:

Data:

We compiled a broad data set on average brain and body mass as well as annual

fertility, age at reproductive maturity and maximum lifespan of eutherian mammals

(1248 species). Life history data was taken from published compilations (Egoscue et

al., 1970; Sacher & Staffeldt, 1974; Kingdon, 1977; Mace & Eisenberg, 1982;

Swihart, 1984; Gittleman, 1986b; Lee et al., 1991; Hayssen et al., 1993; Silva &

Downing, 1995; Nowak, 1999; Ross & Jones, 1999; Carey & Judge, 2000; Miller et

al., 2002; Ernest, 2003; Wiese & Willis, 2004; Weigl, 2005). If data from several

populations or subspecies was available, the median value was used as a species

mean. In contrast to Ernest (2003), data sources were not pooled, as this can lead to

inadvertent duplication of source values. Reaching adulthood was defined as the age

at which first conception took place (age at first reproduction minus gestation length)

and was taken for females only, if available. Brain size measurements were also

compiled from various sources (Oboussier & Schliemann, 1966; Pirlot & Stephan,
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1970; Mace et al., 1981; Stephan et al., 1981; Mace & Eisenberg, 1982; Hafner &

Hafner, 1984; Bauchot, 1985; Pirlot & Kamiya, 1985; Gittleman, 1986a; Bernard &

Nurton, 1993; Iwaniuk et al., 2001; Hutcheon et al., 2002; Mann & Towe, 2003; Isler

et al., in press and G. Mace pers. comm.). They all came from fully adult skulls and

represent the mean of male and female values. Both brain mass and cranial capacity

have been used as measures of brain size. When brain size was expressed in

volume, these values were multiplied by 1.036 g/ml (the density of fresh brain tissue,

Stephan, 1960; in Rehkamper et al., 1991) to obtain brain mass estimates.

Phylogeny:

Taxonomy follows Groves (2005) for primates and Nowak (1999) for all other

mammals. Phylogenetic relationships are those proposed by Bininda-Emonds et al.

(2007), including branch lengths estimations.

Birds:

Data:

Data were assembled from the literature, building on a large dataset of bird brain

masses compiled mainly by Mlikovsky (1989a; 1989b; 1989c; 1990) and Iwaniuk &

Nelson (2003), together with species mean body mass given in these sources (1748

species). All brain weight measurements came from fully adult skulls. Values

represent the mean of male and female weights (see Iwaniuk & Nelson, 2002). Both

brain weight and brain volume have been used as measures of brain size. Although

brain mass is most often used, volumetric measures are considered equally valid

because bird brains almost completely fill the cavum cranii (Mlikovsky, 1989a) and

comparisons between volumetric values and brain weights found no significant

differences (Iwaniuk & Nelson, 2001; Iwaniuk & Nelson, 2002).

Life history data (age at first reproduction, maximum lifespan and annual

fertility rate) was compiled from several sources (mainly Schönwetter, 1960-1978; del

Hoyo et al., 1992-2004). Complete information was available for 399 species, but 11

species were excluded due to unlikely low estimates of maximum lifespan compared

to congeneric species.

Phylogeny:

Taxonomy followed Sibley and Monroe (1990). Phylogenetic relationships are those

proposed by Katie Davis and Rod Page, University of Glasgow (Davis, 2008). The

bird supertree is based on a strict consensus of 2000 trees run in Paup and

assembles information from 748 published phylogenetic trees (Davis, 2008). The
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phylogeny and further details are available online (Bird Supertree Project,

http://linnaeus.zoology.gla.ac.uk/~rpage/birdsupertree/). For 1541 species, both brain

mass data and phylogenetic information was available. The analysis of the

distribution of residuals of brain vs. body mass for bird families is based on this

reduced dataset. Family averages were calculated from species means. For

calculating the retention index, MacClade allows a maximum number of 1500 taxa.

Thus, 41 taxa were omitted arbitrarily.

Because branch length was unavailable, we set all branch lengths equal to

1.0. Sensitivity analysis branch carried out by running all the analyses using three

arbitrary methods (Grafen’s, Pagel’s and Nealen’s method as described in Garland et

al., 1999), demonstrated that the results did not depend upon which branch lengths

were used. Consequently, we present the results based on branch lengths equal to

1.0, which was justified (absolute contrasts vs. square root of the sum of branch

lengths: slopes not significantly different from zero for all variables, Garland et al.,

1999).

As this supertree contains some ambiguities (Davis, 2008), we repeated all

analyses also with a supertree based on Sibley and Ahlquist’s DNA-DNA

hybridisation data (Sibley et al., 1988), as well as on more recent molecular studies

(Sheldon et al., 1992; Sheldon & Winkler, 1993; Livezey, 1995; Livezey, 1996;

Bleiweiss et al., 1997; Cohen et al., 1997; Cibois & Pasquet, 1999; Cibois et al.,

1999; Crochet et al., 2000; DeFilippis & Moore, 2000; Dimcheff et al., 2002; Donne-

Goussé et al., 2002; Yuri & Mindell, 2002; Irestedt et al., 2004), also using equal

branch lengths. However, the results did not differ from those of the Davis tree in

their level of significance.
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Bivariate least-squares regressions of rmax on brain mass and body

mass

Table A1: Bivariate least-squares regressions of rmax in mammals and birds (ln rmax

as dependent variable, ln body mass or ln brain mass as independent variable). The

higher correlation coefficient r2 is shown in bold face.

Brain mass Body mass

method N r2 p slope r2 p slope

Mammals

All species raw 536 0.563 <0.0001 -0.447 0.485 <0.0001 -0.310

IC 535 0.129 <0.0001 -0.349 0.094 <0.0001 -0.200

Altricials raw 249 0.596 <0.0001 -0.488 0.584 <0.0001 -0.367

IC 248 0.115 <0.0001 -0.366 0.099 <0.0001 -0.213

Precocials raw 256 0.439 <0.0001 -0.398 0.244 <0.0001 -0.198

IC 255 0.151 <0.0001 -0.344 0.078 <0.0001 -0.177

Terrestrial

Carnivora raw 98 0.477 <0.0001 -0.439 0.472 <0.0001 -0.286

IC 97 0.253 <0.0001 -0.418 0.150 <0.0001 -0.226

Non-canid

Carnivora raw 79 0.654 <0.0001 -0.495 0.581 <0.0001 -0.303

IC 78 0.337 <0.0001 -0.468 0.169 <0.0001 -0.229

Birds

All species raw 388 0.350 <0.0001 -0.364 0.308 <0.0001 -0.199

IC 387 0.102 <0.0001 -0.321 0.129 <0.0001 -0.213

Altricials raw 137 0.461 <0.0001 -0.330 0.527 <0.0001 -0.233

IC 136 0.118 <0.0001 -0.209 0.114 <0.0001 -0.143

Semi-altricials raw 77 0.590 <0.0001 -0.671 0.669 <0.0001 -0.398

IC 76 0.157 <0.0001 -0.587 0.329 <0.0001 -0.400

Semi-precocials raw 42 0.075 0.079 -0.208 0.027 0.302 -0.082

IC 41 0.115 0.069 -0.227 0.034 0.266 -0.095

Precocials raw 132 0.183 <0.0001 -0.241 0.121 <0.0001 -0.114

IC 131 0.145 <0.0001 -0.366 0.070 <0.0001 -0.171
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Are our results a statistical artefact?

The fact that the correlations for brain mass are generally stronger than for body

mass may simply be because brain mass is actually a more accurate indicator of size

than is body mass. Sacher (1959) found that lifespan is more closely correlated with

brain mass than with body mass. Economos (1980), however, showed that this is

also true for other internal organs such as the liver, suggesting that the stronger

correlation between life histories and brain mass is due to the relatively great intra-

specific variance in body mass rather than to any special link between life histories

and the brain. Have we fallen into the same trap as, purportedly, Sacher (see also

Harvey & Krebs, 1990)? Body mass is notoriously variable within species, and less

variable organs (such as the brain) seem to provide a more reliable measure of size. 

Unfortunately, this problem is not solved by the use of multiple regression.

Still, it would be most unlikely that the observed patterns of correlation vary between

groups of taxa exactly in the way predicted by the Expensive Brain framework, if the

results were indeed due to a statistical artefact. For instance, why should brain mass

not be a better predictor of body size in altricial birds, too? But a much stronger test

is possible. If our results are indeed based on an artefact, the same general pattern

should be found for other organs, such as the liver, the heart or muscle mass, which

also tend to vary much less than body mass and may thus be a better estimate of

actual body size. If, on the other hand, the rmax-brain size correlation is biologically

meaningful, other organ masses should not be negatively correlated with rmax.

We have conducted analogous analyses using other organ masses instead of

brain mass to predict rmax. Data for mammals are taken from Crile & Quiring (1940),

and pectoral muscle mass data for birds are taken from Magnan (1922) as listed in

Viscor & Fuster (1987).

The results presented in Table A2 are fully consistent with our predictions. In

mammals, only brain mass is significantly correlated with rmax, whereas none of the

other organs show any significant correlation at all. The results also hold if precocials

and altricials are analyzed separately, although not always yielding significant results

due to the smaller sample sizes.

In birds, the situation is more complex. We lack data on organ weights for a

sufficiently large number of species. However, there are data on pectoral muscle

mass, and we could show (Isler and van Schaik 2006) that there is a trade-off in the

maintenance category in birds: species with relatively large brains have relatively

small pectoral muscles and vice versa (probably due to the high energetic demands

of flight). Thus, we would expect that in precocial birds, rmax and pectoral muscle

mass will be correlated through an indirect effect of brain mass on both variables.
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Table A2: Multiple least-squares regressions of rmax vs. various organ masses in

mammals and birds (ln rmax as dependent variable, ln body mass and, subsequently,

ln of each organ mass as independent variables). For both body mass and organ

mass, p-values and the correlation coefficient with rmax are listed. As the observed

correlation between rmax and brain mass differs completely between altricial and

precocial birds, those two development modes are analysed separately in birds.

Significant effects are shown in bold face.

Body mass Organ mass

N r2 p estimate p estimate

Mammals

Heart mass 88 0.58 0.013 -0.564 0.331 +0.219

Lung mass 83 0.567 0.064 -0.319 0.864 -0.028

Liver mass 83 0.626 0.015 -0.495 0.489 +0.152

Kidney mass 79 0.627 0.029 -0.385 0.887 +0.028

Brain mass 87 0.716 0.005 0.298 <0.0001 -0.944

Birds (precocial)

Pectoral muscle mass 58 0.162 0.015 -0.523 0.069 +0.407

Brain mass (for the

same sample) 57 0.243 0.188 +0.248 0.021 -0.753

Birds (altricial)

Pectoral muscle mass 53 0.682 <0.0001 -0.711 0.002 +0.482

Brain mass (for the

same sample) 52 0.621 0.057 -0.159 0.324 -0.122

This is, indeed, found in our sample, although the correlation is just shy of

significance (p=0.069, Table A2). Relatively large-brained precocial birds exhibit a

relatively low rmax (and, at the same time, relatively small pectoral muscles). Thus, the

(positive) correlation between rmax and pectoral muscle does not arise because

pectoral muscle mass is a better estimator of body size than body mass, but because

of the energy trade-off between its size and that of the brain.

In altricial birds, on the other hand, as rmax and brain mass are not correlated,

we would only expect a significant effect of pectoral muscle mass on rmax, if pectoral

muscle mass is a better estimate of body size than body mass itself. In this case, the

correlation between rmax and pectoral muscle mass should be negative, while the

effect of body mass on rmax should disappear or become positive. However, we

observe a significantly positive correlation between pectoral muscle mass and rmax,
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and the negative effect of body mass on rmax is maintained (Table A2). In other

words, altricial bird species with relatively large pectoral muscles for their body mass

exhibit an increased reproductive capacity as proxied by rmax, independent of their

brain size. It is beyond the scope of the present paper to interpret this interesting

result, but regardless, in altricial birds as in precocial ones, pectoral muscle mass is

not a better predictor of body size than body mass itself. Thus, we conclude that the

relationships between brain size and rmax obtained here are biologically meaningful

and do not originate from a statistical artefact.

Which aspects of life history are associated with both brain size and

rmax?

The maximum rate of population increase (also termed „intrinsic rate of natural

increase“, e.g. Ross 1992), rmax, is defined by Cole’s equation (21) in Cole (1954):

€ 

1= e−r + b e−r⋅α − e−r(ω +1)( )
with b = annual fecundity, α = minimum age at first reproduction (AFR) and ω =

maximum age at last reproduction. Here, we use fertility (= 2*b) and maximum

lifespan as ω (except for humans, where ω = 45y (Hill & Hurtado 1996)).

Additionally, we define the maximum reproductive period (MaxRP) as max. lifespan

minus AFR. Sample sizes are given in Table A3.

Table A3: Sample sizes (number of species).

Mammals Birds

Altricials Precocials Altricials Precocials

249 256 142 127

Correlations between components of rmax

All life history traits that contribute to rmax are highly correlated with each other (after

partialling out body mass), except maximum lifespan and fertility in altricial birds

(Table A4). From the definition, we expect that fertility and maximum lifespan, as well

as maximum reproductive period are positively correlated with rmax, whereas age at

first reproduction is negatively correlated with rmax.
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Table A4: Pairwise correlations between components of rmax (AFR, max. lifespan and

fertility), partialling out body mass.

Altricials Precocials

r p r p

Mammals

AFR – max lifespan 0.230 0.0003 0.789 <0.0001

AFR – fertility -0.485 <0.0001 -0.772 <0.0001

Max lifespan – fertility -0.287 <0.0001 -0.671 <0.0001

Birds

AFR – max lifespan 0.190 0.024 0.325 0.0002

AFR – fertility -0.490 <0.0001 -0.573 <0.0001

Max lifespan – fertility -0.024 0.778 -0.407 <0.0001

In all groups the partial correlation between maximum lifespan and rmax is

weak as compared to the other two variables (Table A5). In altricial mammals,

maximum lifespan is even significantly negatively correlated with rmax. In all groups,

MaxRP is not positively correlated with rmax if fertility is partialled out (Table 2A in the

main text). In precocial mammals, MaxRP is even significantly negatively correlated

with rmax.

Table A5: Partial correlations between rmax and its components (AFR, max. lifespan

and fertility), partialling out body mass and the other two life history variables.

Altricials Precocials

r p r p

Mammals

AFR -0.975 <0.0001 -0.902 <0.0001

Max lifespan -0.158 0.013 0.195 0.002

Fertility 0.931 <0.0001 0.948 <0.0001

Birds

AFR -0.982 <0.0001 -0.994 <0.0001

Max lifespan 0.191 0.025 0.037 0.682

Fertility 0.987 <0.0001 0.993 <0.0001
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Correlations between brain mass and components of rmax

Life history traits that contribute to rmax are mostly correlated with brain mass (even

when body mass is partialled out), but not in altricial birds (Table A6). Note that, as a

weak trend, fertility is even positively correlated with brain mass in the latter group.

AFR is not correlated with brain mass in altricial mammals (cf. Isler & van Schaik, in

review: The lengths of development periods are not correlated with brain size in

altricial mammals).

Table A6: Pairwise correlation coefficients between brain mass and components of

rmax (AFR, max lifespan and fertility), partialling out body mass.

Altricials Precocials

r p r p

Mammals

AFR 0.092 0.147 0.650 <0.0001

Max lifespan 0.326 <0.0001 0.517 <0.0001

Fertility -0.238 0.0002 -0.698 0.0002

Birds

AFR 0.103 0.224 0.393 <0.0001

Max lifespan 0.076 0.372 0.341 <0.0001

Fertility 0.121 0.154 -0.324 0.0002

If not only body mass, but all life history variables are partialled out

simultaneously, in each precocial group a different variable is no longer significantly

correlated with brain mass (Table A7, next page): maximum lifespan in precocial

mammals, fertility in precocial birds. To clarify the patterns, we look at partial

correlations between MaxRP, fertility and brain mass (as usual also partialling out

body mass). Table 2B in the main text shows that fertility rate is negatively correlated

with brain mass in three groups (all except altricial birds), while MaxRP is positively

correlated with brain mass only in altricial mammals and precocial birds.

Conclusion

In both altricial and precocial mammals, as well as in precocial birds, the negative

correlation between rmax and brain size can mostly be attributed to the influence of

fertility rate. The absence of a correlation in altricial birds can also be attributed to

fertility rate, which is not negatively, but even positively correlated with brain mass

(controlling for body mass, as a weak trend).
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Table A7: Partial correlation coefficients between brain mass and components of rmax

(AFR, Max lifespan and fertility), partialling out body mass and the other two life

history variables.

Altricials Precocials

r p r p

Mammals

AFR -0.060 0.349 0.230 0.0002

Max lifespan 0.281 <0.0001 -0.035 0.580

Fertility -0.169 0.008 -0.405 <0.0001

Birds

AFR 0.139 0.103 0.247 0.006

Max lifespan 0.052 0.546 0.219 0.015

Fertility 0.162 0.058 -0.066 0.464

Distribution of large-brained taxa in mammals and birds: retention

indices

Table A8: Retention indices (RI) for relatively large brain size in mammals (N=1231)

and birds (N=1500). Groups are based on percentiles of residuals of least-squares

regressions of brain mass vs. body mass.

Upper 10% of residuals Upper 15% of residuals

Steps RI Steps RI

Mammals 38 0.70 54 0.71

Birds 59 0.61 85 0.63
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