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Supplemental Figure 1: Map-based isolation of the csn2-5 
mutation.

Chromosome landing at the csn2-5 locus was initiated by a 
combination of bulk-segregant/ AFLP analysis. AFLP mark-
ers are shown in bold. A window containing csn2-5 was 
defined and refined using micro-satellite and (d)CAPS mark-
ers. Corresponding portions of chromosome 2 are shown 
with their respective scales. A 46-kb window encompassing 
csn2-5 was defined.
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Supplemental Figure 2: Relative physiological and molecular characterization of the csn2-5 and 
csn5a-1 mutants
(A) Morphology of five-weeks-old plants grown under long day conditions. Scale = 10 cm. (B) Inhibition 
of root elongation by increasing concentrations of synthetic auxin 2,4-D. Data points are averages of 8 
seedlings and standard deviations were less than 10%. Measurements of root elongation were 
performed on 8-days-old seedlings, 3 days after transfer on auxin-containing medium. One represen-
tative experiment out of three repetitions is shown. (C, D, E) Arabidopsis plants were incubated for 6 h 
under light conditions to induce germination and returned to complete darkness for 4 d. Photographs 
were taken immediately and used for scoring cotyledon opening (n≥20) (E) and hypocotyls 
elongation(n≥20) (D). Error bars represent standard deviations. One representative experiment out of 
three is shown. wt: wild type.
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Supplemental Figure 3: Physiological and biochemical
characterization of TIR1-HAStrep transgenic plants

(A) Complementation of the tir1-1 mutation by TIR1-HAStrep
expressed from its own promoter was tested in the root growth 
inhibition assay with increasing concentrations of 2,4-D. TIR1-
HAStrep transgene was initially transformed into Col-0 tir1-1 and
subsequently crossed to Col-0 to generate Col-0 TIR1-HAStrep.
Data points are the average of at least 10 seedlings. One represen-
tative experiment out of three is shown. Standard deviations were 
<10%. 
(B) Inhibition of root elongation by increasing concentrations of 
2,4-D. TIR1-HAStrep transgene was initially transformed into Ler
and sequentially introgressed into Ler sgt1b-3 and Ler sgt1b-
3/csn2-5. Data points are the average of at least 10 seedlings. 
Standard deviations were <10%, one representative experiment 
out of three is shown. Standard deviations were <10%.  
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(C) TIR1-HAStrep is not a short-lived F-box protein. Cycloheximide 
(CHX, 100µM) was used to block translation and evaluate stability 
of TIR1-HAStrep in the wild-type Ler genotype with and without 
addition of auxin (5µM 2,4-D). Seedlings were harvested at the 
indicated time points after addition of CHX and total protein extracts 
analyzed on immunoblots with anti-HA antibody. A coomassie-
stained portion of the gel is shown to evaluate relative loading of the 
samples.
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Supplemental Figure 4: Model for post-translational regulation of SCFTIR1 activity in wild-type 
and csn mutants
Disassembly of CAND1 from CUL1 allows neddylation of CUL1 and assembly of an active SCFTIR1 
auxin receptor. Upon auxin binding, Aux/IAA proteins are poly-ubiquitinated and ultimately targeted for 
proteasome-dependent degradation. SCFTIR1 can be inactivated by CSN-mediated deneddylation and 
individual SCF components are recycled. As a rare event, TIR1 ubiquitination causes SCFTIR1 inactiva-
tion and degradation thus diminishing auxin perception and downstream responses. In csn mutants, 
SCFTIR1 components cannot be recycled and are sent preferentially for degradation by the 
ubiquitin/proteasome pathway thus explaining the auxin insensitive phenotype of those mutants. Ub, 
ubiquitin; CUL, cullin; ASK, Arabidopsis SKP1; TIR, TIR1; Aux, AUX/IAA; RUB, NEDD8/RUB modifica-
tion; CanD, CanD1; CSN, COP9 signalosome; white asterix, auxin.
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