SUPPLEMENTAL INFORMATION

Supplemental figure legends

Supplemental Figure 1. Alignment of deduced amino acid sequences of GR from various organisms. Deduced amino acid sequences of GR from *Escherichia coli gorA*, *S. cerevisiae GLR1* (YPL091W), and human (GSHR_HUMAN) were compared with that of AN0932.3 (*glrA*) from *A. nidulans*, and aligned using CLASTAL W software. Motif for active center is highlighted in red font. Other conserved motifs are boxed: yellow and red, Rossmann folds; green, motif for contacting isoalloxazine ring; blue, FAD-binding motif. Met¹ and Met⁸⁶ are shown in blue font.

Supplemental Figure 2. Partial nucleotide and deduced amino acid sequences of *glrA***.** Red and blue fonts predicted start sites of transcription and translation (Met¹ and Met⁸⁶), respectively.

Supplemental Figure 3. Enzymic properties of *A. nidulans* **GIrA.** *A*, SDS-PAGE of purified enzyme. Purified enzymes (1 μg) were resolved by SDS-PAGE on 10% polyacrylamide gels and stained with Coomassie brilliant blue. Lanes: 1, markers (Precision Protein Standard kit, Bio-Rad); 2, rGlrA. *B*, Superose 6 10/300 GL gel filtration of rGlrA. Circle and squares represent elution volume of rGlrA and molecular weight markers, respectively. Molecular weight markers: 1, bovine serum albumin (67 kDa); 2, ovalbumin (43 kDa); 3, carbonic anhydrase (30 kDa); 4, soybean trypsin inhibitor (20.1 kDa). *C*, Redox titration of rGlrA. rGlrA (38 μM) in 100 mM sodium phosphate buffer (pH 7.2) at 25°C. Visible spectra are representative of those obtained during titration by sodium dithionite. *D*, Spectral changes of rGlrA upon incubation with NADPH. rGlrA (38 μM) in 50 mM sodium phosphate buffer (pH 7.2) was mixed with 0.2 mM NADH under aerobic conditions. Spectra: black line, resting (oxidized); grey line, at 10 s after addition; dotted line, GSSG was added after addition of NADPH.

Supplemental Figure 4. Two-dimensional gel electrophoresis of cell-free extracts of *A. nidulans* **WT** (**A**) **and DGR1 strains (B).** Mycelia of *A. nidulans* WT (FGSC A26) and DGR1 were incubated in MMDN medium for 6 h after pre-cultivating conidia at 30°C for 20 h (WT) and 28 h (DGR1).

Supplemental Figure 5. Two-dimensional gel electrophoresis of cell-free extracts of *A. nidulans* **A26** (A) **and DGR1 strains (B).** Mycelia of *A. nidulans* WT (FGSC A26) and DGR1 were incubated in MMDN medium for 6h after pre-cultivating conidia at 30°C for 20 h (WT) and 28 h (DGR1).

Supplemental Figure 6. Phylogenetic relationship among glutathione-S-transferases from various organisms. Multiple alignment and neighbor joining methods were performed by using Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0 (http://evolgen.biol.metro-u.ac.jp/MEGA/). Accession numbers were from Broad Institute (http://www.broad.mit.edu/annotation/fgi/) or EMBL/GenBank/DDBJ.

AN0932. 3	MLSRSSLRSLSAQASK I RLTRSSLVCSP I TQSNRAYTSYG I ATRNQKRGVLDSSSRSA I S
S. cerevisiae	MLSATKQTFRSLQIRTMSTN
Human	MALLPRALSAGAGPSWRRAARAFRGFLLLLP
E. coli	
AN0932. 3	TPTGLRLASLTRQFSSTSPAANSSNWPPVETKQYDY I VL <mark>ggg</mark> sggggraagwygakt
S. cerevisiae	TKHYDYLVI <mark>g</mark> g <mark>g</mark> vasarraasyg-akt
Human	EPAALTRALSRAMACRQEPQPQGPPPAAGAVASYDYLVI <mark>g</mark> ggsg <mark>g</mark> lasarraaelg-ara
E. coli	MTKHYDY I A I <mark>ggg</mark> sg <mark>g</mark> i as i nraamyg-gkc
AN0932. 3	LIV <mark>e</mark> sgraggt <mark>cvnvgc</mark> vpkkmtwnfasitesieagrhygydlPhNIDVNYTHFK
S. cerevisiae	LLV <mark>E</mark> AKALGGTCVNVGCVPKKVMWYASDLATRVSHANEYGLYQNLPLDKEHLTFNWPEFK
Human	AVV <mark>E</mark> SHKLGGTCVNVGCVPKKVMNNTAVHSEFMHDH-ADYGFPSCEGKFNWRVIK
E. coli	AL I <mark>E</mark> AKELGGTCVNVGCVPKKVMWHAAQ I REA I HMYGPDYGFDTT I N
AN0932. 3	KLRDSTIERLNGVYEKNWGNEGIDLVHGRARFVEKKTIEVTNQDGSRTRYTAPHILIATG
S. cerevisiae	QKRDAYVHRLNG I YQKNLEKEKVDVVFGWARFNKDGNVEVQKRDNTTEVYSANH I LVATG
Human	EKRDAYVSRLNA I YONNLTKSHI E I IRGHAAFTSD-PKPT I EVSGKKYTAPHIL I ATG
E. coli	ASRTAYIDRIHTSYENVLGKNNVDVIKGFARFVDAKTLEVNGETITADHILIATG
AN0932. 3	GRPSLPD
S. cerevisiae	GKA I FPEN— I PGFELGTDSDGFFRLEEQPKKVVVVGAGY I G I ELAGVFHGLGSETHLV I
Human	GMPSTPHESQ I PGASLG I TSDGFFQLEELPGRSV I VGAGY I AVENAG I LSALGSKTSLM I
E. coli	GRPSHPDIPGVEYGIDSDGFFALPALPERVAVV <mark>G</mark> A <mark>G</mark> YI <mark>AVE</mark> LAGVINGLGAKTHLFV
AN0932. 3	RGETFLRKFDPM I QKTMTERYEAVG I HVHKKHPG I KEVQLLR—DGKGKDKLLKL I MNDG
S. cerevisiae	RGETVLRKFDECIONTITDHYVKEGINVHKLS-KIVKVE-KNVETDKLKIHMNDSK
Human	RHDKVLRSFDSMISTNCTEELENAGVEVLKFSQVKEVKKTLSGLEVSMVTAVPGRLPVMT
E. coli	RKHAPLRSFDPM I SETLVEVMNAEGPQLHTNA I PKAVVKNTDGSLTLELEDGR
AN0932. 3	SEMEV <mark>N</mark> ELLWA I <mark>G</mark> RV <mark>P</mark> EVEDLHLE I PGVELNKSGHVVVDEYQNTNVEG I <mark>y</mark> a I GDVTGQAE
S. cerevisiae	SIDDV <mark>D</mark> ELIWTI <mark>G</mark> RK <mark>S</mark> HLG-MGSENVGIKLNSHDQIIADEYQNTNVPNI <mark>Y</mark> SLGDVVGKVE
Human	MIPDVDCLLWAIGRVPNTKDLSLNKLGIQTDDKGHIIVDEFQNTNVKGIYAVGDVCGKAL
E. coli	-SETV <mark>D</mark> CLIWAI <mark>GREP</mark> ANDNINLEAAGVKTNEKGYIVV <mark>D</mark> KYQN <mark>T</mark> NIEGI <mark>y</mark> AVGDNTGAVE
AN0932. 3	LTPVA I AAGRQLGNRLFGGPOFKNAKLSYDN I PTVVFSHPEVGTVGLTEPQARERFGDEN
S. cerevisiae	LTPVA I AAGRKLSNRLFGPEKFRNDKLDYENVPSVI FSHPEAGS I GI SEKEA I EKYGKEN
Human	LTPVA I AAGRKLAHRLFEYK-EDSKLDYNN I PTWFSHPP I GTVGLTEDEA I HKYG I EN
E. coli	${\tt LTPVAVAAGRRLSERLFNNKPDEHLDYSNIPTVVFSHPPIGTVGLTEPQAREQYGDDQ}$
AN0932. 3	VKVYHTRFPAMFYSVFPPEEKAKNPTEFKMVVAGPEEKVVGLHLLGLGVGEMTQGFGVAV
S. cerevisiae	IKVYNSKFTANYYANILSEKSPTRYK I VCAGPNEKVVGLH I VGDSSAE I LQGFGVA I
Human	VKTYSTSFTPMYHAVTKR-KTKCVMKMVCANKEEKVVG1HMQGLGCDEMLQGFAVAV
E. coli	VKVYKSSFTAMYTAVTTH
AN0932. 3	KMGATKKDFDSCVAIHPTSAEELVTLR
S. cerevisiae	KMGATKADFDNCVAIHPTSAEELVTMR
Human	KMGATKADFDNTVAIHPTSSEELVTLR
E. coli	KMGATKKDFDNTVAIHPTAAEEFVTMR

-22 ATGCTCTCCGCTCCGCTCCGGTCATTAAGTGCCCAAGCGTCGAAGATTCGGCTCACC M L S R S S L R S L S A Q A S K I R L T R S S L V C S P I T Q S N R A Y T S Y G ATTGCCACTAGAAACCAGAAGAGAGAGGAGTCCTGGATTCTTCATCTCGCTCAGCTATCTCC I A T R N Q K R G V L D S S S R S A I S +172 ACTCCCACTGGGCTGCGTCTGGCCTCGCTCACAAGACAATTTTCATCCACTTCGCCTGCA T P T G L R L A S L T R Q F S S T S P A GCGAACTCGAGCAACATGCCGCCGGTGGAGACAAAACAGTATGACTATATCGTGTTAGGT A N S S N M P P V E T K Q Y D Y I V L G

310320330340350GGTGGTAGCGGTGGTAGCGGTAGTGGCCGTAGAGCTGCCGGTTGGTAC.....GGSGGRAGWY.....

Supplemental Table 1 Distribution of predicted GST proteins among fungi

Predicted GST proteins from *A. nidulans* were compared with fungal genome nucleotide sequences published in Broad Institute (http://www.broad.mit.edu/annotation/fgi/), and more than 30% identical proteins to them are shown. Accession numbers are from Broad Institute. Identities are shown below accession numbers in percents. Blank; corresponding proteins were not found.

Ascomycetes												
Aspergillus nidulans	Class	Aspergillus terreus	Botrytis cinerea	Candida albicans	Candida tropicalis	Chaetomium globosum	Coccidioides immitis	Fusarium graminearum	Fusarium oxysporum	Fusarium verticilloides	Histoplasma capsulatum	Lodderomyces elongisporus
AN3299	alpha	ATEG_07534.1 64	BC1G_12605.1 60			CHG06688.1 45		FGSG_00172 45	FOXG_01307 50	FVEG_00186 49		
AN3849	kappa	ATEG_05408.1 60	BC1G_12830.1 42			CHG10295.1 42	CIMG_08781.2 49	-			HCAG_06266.1 45	
AN5831	omega	ATEG_06899.1 79	BC1G_03433.1 38	CAWG_01559 45	CTRG_00896.3 46	CHG04901.1 35	CIMG_00933.2 67	FGSG_04433 56	FOXG_13780 56	FVEG_11213 56	HCAG_07421.1 67	LELG_00071.1 *48
AN10273	omega	ATEG_02453.1 90	BC1G_03433.1 55	CAWG_01559 56	CTRG_00896.3 56	CHG04901.1 63	CIMG_00293.2 73	FGSG_09688 66	FOXG_08382 67	FVEG_06294 67	HCAG_01006.1 76	LELG_00071.1 55
AN10379	omega	ATEG_02453.1 46	BC1G_09470.1 52	CAWG_01559 49	CTRG_00896.3 48	CHG04901.1 40	CIMG_00293.2 42	FGSG_09688 43	FOXG_16651 63	FVEG_13590 62	HCAG_01006.1 42	LELG_00071.1 47
AN6024 (gstB)	GstB-like	ATEG_06528.1 69	BC1G_05767.1 35					*FGSG_03802 58	FOXG_13104 57	*FVEG_12937 61		
AN9299	cluster 2	ATEG_03359.1 71	BC1G_09645.1 38	CAWG_03499 40	CTRG_00284.3 40	CHG07334.1 49	CIMG_03767.2 46	FGSG_02000 47	FOXG_04328 47	FVEG_07456 47		LELG_04375.1 41
AN4905 (gstA)	cluster 2	ATEG_04611.1 82	BC1G_09645.1 43	CAWG_03499 45	CTRG_00284.3 49	CHG07334.1 62	CIMG_03767.2 71	FGSG_02000 57	FOXG_04328 57	FVEG_07456 56	HCAG_02355.1 35	LELG_04376.1 47
AN1595	EF1Bγ	ATEG_06992.1 49	BC1G_00939.1 42	CAWG_02910 31		CHG07289.1 44	CIMG_02699.2 44	FGSG_07401 35		FVEG_07856 36	HCAG_08236.1 37	LELG_02811.1 32
AN6563	EF1Bγ	ATEG_06992.1 81	BC1G_00939.1 54	CAWG_02910 45	CTRG_02705.3 46	CHG07289.1 50	CIMG_02699.2 57	FGSG_07401 49	FOXG_01492 50	FVEG_07856 52	HCAG_08236.1 57	LELG_02811.1 46
AN7807	EF1Bγ	ATEG_06992.1 39	BC1G_00939.1 44	CAWG_02910 34	CTRG_02705.3 33	CHG07289.1 42	CIMG_02699.2 40	FGSG_07401 40	FOXG_01492 39	FVEG_07856 42	HCAG_08236.1 42	LELG_02811.1 35
AN9304	EF1Bγ	ATEG_05085.1 77	BC1G_10460.1 44			CHG02356.1 42		FGSG_13223 44		FVEG_11084 45		
AN10038	EF1Bγ	ATEG_06992.1 30	BC1G_00939.1 38			CHG07289.1 37	CIMG_02699.2 38	FGSG_07401 34		FVEG_07856 35	HCAG_08236.1 36	LELG_02811.1 32
AN3255	Ure2p	ATEG_06384.1 44		CAWG_04225 34	CTRG_01617.3 34	CHG09399.1 55	CIMG_00771.2 51	FGSG_01816 40	FOXG_10072 44	FVEG_08420 39	HCAG_02355.1 74	LELG_01948.1 34
AN6612	MAK16	ATEG_07051.1 94	BC1G_08156.1 84	CAWG_04380.1 68	CTRG_01790.3 66	CHGG_07201.1 69	CIMG_10174.3 71	FGSG_05193.3 69	FOXG_07948.2 73	FVEG_04866.3 73	HCAG_05122.1 89	LELG_01895.1 67
AN1895	MAAI	ATEG_05925.1 64					CIMG_01314.2 50	FGSG_02852 49	FOXG_15752 47	FVEG_13215 47	HCAG_02121.1 53	
AN10695	MAPEG	ATEG_03896.1 77	BC1G_03423.1 63			CHG02754.1 35	CIMG_01614.2 68	FGSG_01294 40	FOXG_11417 42	FVEG_10403 48	HCAG_01368.1 36	
AN3298	unclassified	ATEG_05146.1 60	BC1G_04672.1 42				CIMG_03351.2 63	FGSG_07224 33	FOXG_17209 61	FVEG_05362 31	HCAG_02776.1 47	

* Another orthologs were found (FGSG_11062 (53%), FVEG_12433 (56%), RO3G_08558.1 (32%)).

								Basidiomycetes			Chytridiomycetes	Zygomycetes
Aspergillus nidulans	Class	Magnaporthe grisea	Neurospora crassa	Sclerotinia sclerotiorum	Saccharomyces cerevisiae RM11- 1a	Schizo- saccharomyces japonicus	Uncinocarpus reesii	Coprinus cinerea	Cryptococcus neoformans Serotype A	Ustilago maydis	Batrachochytrium dendrobatidis	Rhizopus oryzae
AN3299	alpha			SS1G_01922.1				CC1G_10591.1				
AN3849	kappa		NCU01636 49	41 SS1G_09579.1 42			UREG_02764.1 47	35		UM05678.1 31		
AN5831	omega	MGG_01410.5 47	NCU04368 46	SS1G_08258.1 *50	SCRG_02146 38		UREG_00366.1 37	CC1G_11081.1 42	CNAG_01889.1 46	UM01515.1 47		RO3G_13689.1 *53
AN10273	omega	MGG_01410.5	NCU04368 64	SS1G_08258.1	SCRG_04091 48		UREG_00366.1 71	CC1G_11081.1	CNAG_01893.1	UM01515.1 48		RO3G_13689.1
AN10379	omega	MGG_02244.5 62	NCU04368 45	SS1G_05554.1 58	SCRG_04091 39			CC1G_11081.1 46	CNAG_01893.1 46	UM01515.1 39		RO3G_13689.1 44
AN6024 (gstB)	GstB-like											*RO3G_01266.1 33
AN9299	cluster 2	MGG_06747.5 44	NCU04109 43	SS1G_07195.1 47			UREG_07517.1 47	CC1G_00666.1 40	CNAG_04110.1 39		BDEG_08491 43	
AN4905 (gstA)	cluster 2	MGG_06747.5 57	NCU05780 39	SS1G_07195.1 65	SCRG_03353	SJAG_00238 38	UREG_07517.1 70	CC1G_00666.1 44	CNAG_04110.1 44	UM06325.1 39	BDEG_08491 44	RO3G_09910.1
AN1595	EF1Bγ	MGG_06936.5 41	NCU03826 42	SS1G_00220.1 62			UREG_03068.1 39					
AN6563	EF1Bγ	MGG_06936.5 50	NCU03826 52	SS1G_00220.1 54	SCRG_02444 43	SJAG_02017 37	UREG_03068.1 52	CC1G_01604.1 39	CNAG_00417.1 37	UM02442.1 37	BDEG_06207 36	RO3G_13129.1 37
AN7807	EF1Bγ	MGG_06936.5 40	NCU03826 42	SS1G_00220.1 44	SCRG_02444 31		UREG_03068.1 41				BDEG_06207 32	RO3G_09910.1 31
AN9304	EF1Bγ	MGG_12569.5 38	NCU10521 39					CC1G_01604.1 36			BDEG_06207 35	RO3G_13129.1 39
AN10038	EF1Bγ	MGG_06936.5 32	NCU03826 34	SS1G_00220.1 38			UREG_03068.1 32					
AN3255	Ure2p	MGG_09138.5 44	NCU05780 44	SS1G_10108.1 52	SCRG_03353 36	SJAG_00179 41	UREG_00745.1 51					
AN6612	MAK16	MGG_04069 59	NCU04150 62	SS1G_08782 70	SCRG_05659.1 66	SJAG_00689.2 64	UREG_03547.1 86			UM05387.1 56	BDEG_01326.1 54	RO3G_16892.1 65
AN1895	MAAI						UREG_01240.1 51				BDEG_01302 38	RO3G_11518.1 33
AN10695	MAPEG	MGG_05367.5 43	NCU00549 39	SS1G_06623.1 65			UREG_03256.1 39	CC1G_06890.1 44	CNAG_06238.1 37	UM01870.1 48		
AN3298	unclassified	MGG_06383.5 35	NCU06494 35	SS1G_12640.1 43			UREG_07177.1 60				BDEG_08674 35	