Supplemental Data. Sugio et al. (2009). The cytosolic protein response as a sub-component of the wider heat-shock response in *Arabidopsis*.

Supplemental Figure 1. Time course of heat-shock, CPR and UPR marker gene

(A) Time course of *HSP70A* expression during heat treatment (37°C) determined using qRT-PCR.

(B) Time course of HSF70A and Bip3 expression after the infiltration of AZC.

(C) Time course of $\beta ZIP60$ and *Bip3* expression after the infiltration of tunicamycin. In each case, relative expression level of *HSP70A* to *EF1a* is shown. Measurements are the means of three technical and three biological replicates. Bars= <u>+</u>SD

Supplemental Figure 2. Clustal analysis of public and recoded microarray datasets.

Public dataset transcript changes for heat-stressed shoots, determined within the AtGeneExpress project (Heat-Stressed samples: Nover et al. Gene Expression Omnibus (GEO) Accession GSE5628; Control: Townsend et al. GEO accession GSE5620) were compared with our microarray data for hHeat- shock (HS), AZC- and Tunicamycin-treated tissues. The analysis of the public dataset was carried out using the same statistical approaches as for our experiments but restricted to shoot samples (32 chips) with the following time points: [0 h = start heat stress] 0.25 h, 0.5 h, 1 h, 3 h, 4 h, 6 h, 12 h, 24 h. The analysis shows a close correlation of our heat-stressed samples with the public data and a clustering of our tunicamycin-treated samples with the earliest responses to heat stress. The left scale bar represents the correlation distance.

ATGGAAGAACTGAAAGTGGAAATGGAGGAAGAAACGG TGACGTTTACTGGTTCTGTAGCGGCTTCTTCATCTGT AGGATCCTCTTCCTCCTAGACCAATGGAAGGGCTT AACGAAACAGGGCCACCACCGTTTCTGACTAAGACTT ACGAAATGGTGGAAGATCCGGCGACGGACACGGTGGT TTCTTGGAGTAATGGTCGTAACAGCTTTGTGGTGTGG GATTCTCATAAGTTCTCAACAACTCTCCTTCCACGTT ACTTCAAGCATAGCAATTTCTCAAGTTTTATTCGTCA GCTCAATACTTATgtaagtacctctttgcttccttat ttaattttggatttctttag**atgggtttccta<u>tgag</u>t** cttcagctataaaggttagttctttaagcttttaagt *gcag*GGATTCAGAAAGATTGATCCAGATAGATGGGAA TTTGCAAATGAAGGGTTTTTTAGCAGGACAAAAGCATC TCTTGAAGAACATCAAAAGAAGGAGGAACATGGGTTT GCAGAATGTGAATCAGCAAGGATCTGGGATGTCATGT GTTGAGGTTGGGCAATACGGTTTCGACGGGGGGGGGGTTG AGAGGTTGAAGAGGGATCATGGTGTGCTTGTAGCTGA GGTAGTTAGGTTGAGGCAACAGCAACAGCTCCAAG AGTCAAGTTGCAGCTATGGAGCAACGGTTGCTTGTTA CTGAGAAGAGACAGCAGCAGATGATGACGTTCCTTGC CAAGGCGTTGAACAATCCGAACTTTGTTCAGCAGTTT GCGGTTATGAGTAAAGAGAAGAAGAGTTTGTTTGGTT TGGATGTGGGGGGGGGAGGAAACGGAGGCTTACTTCTACTCC AAGCTTGGGGGACTATGGAGGAGAATTTGTTACATGAT CAAGAGTTTGATAGAATGAAGGATGATATGGAAATGT TGTTCGCTGCAGCAATCGATGATGAGGCGAATAATTC GATGCCTACTAAGGAGGAACAATGTTTGGAGGCTATG AATGTGATGATGAGAGAGGTGGTAATTTGGAAGCAGCGT TGGATGTGAAAGTGGAAGATTTGGTTGGTTCGCCTTT GGATTGGGACAGCCAAGATCTACATGACATGGTTGAT CAAATGGGTTTTCTTGGTTCGGAACCT**TAA**

Supplemental Figure 3. Nucleotide sequence of HSFA2-II.

The nucleotide sequence of *HSFA2-II* RNA is shown in black. Mini-exon is identified in black small capitals. The premature stop codon is indicated by an underline. Intron sequences are shown in lowercase blue letters.

Supplemental Figure 4. Later HSP70A responses in the *hsfa2* **knock-out line showing CPR.** Expression analysis (qRT-PCR) for *HSP70A* RNA in the *hsfa2* insertional null (KO) mutant and a wild type (Col-0) control plant, 6 h after treatment with AZC. The data, expressed as values relative to the expression of *EF1a*, are the mean (Bars = \pm SD) of three biological and three technical replicates. *HSP70A* induction in the *hsfa2* mutant was significantly different from that of Col-0 plant at *p* value < 0.05.

Supplemental Figure 5. Characterization of *HSFA7a* knock-out and over-expression lines.

(A) Northern blot analysis of *HSFA7a* RNA in the lines over-expressing pro35S:*HSFA7a*. (B) The growth of *Arabidopsis* lines (Col-0 wild type, HSFA7a KO mutant, two HSFA7a over-expression lines) in the media with the indicated concentration of AZC. The percentage growth was calculated in comparison to the growth of the lines cultured without AZC. The data show the average of three sets of plants. The growth rates of mutant and transgenic lines were compared to Col-0 wild type *Arabidopsis* at each concentration of AZC (student's t-test; p value <0.05) is indicated by asterisks. Two asterisks show significant growth reduction. Only the *hsfa7a* mutant line at the highest AZC concentration showed any significant difference. Bars = \pm SD

Supplemental Figure 6. Time course of *HSFA2* and *HSFA2-II* transcript accumulation in wild-type and NMD defective plants.

(A, B) The time course of the accumulation of *HSFA2-II* to *HSFA2* RNAs after heat-shock in Col-0 wild type (A) and *upf1-5* mutant (B). The *upf1-5* mutant lacks an essential component of NMD machinery. Transcript accumulation was measured by qRT-PCR relative to the expression of *EF1a*. The data are the same as the data used to show the relative accumulation of *HSFA2-II* RNA in Fig 6. The data are the mean of three replicates. Bars= \pm SD.

(C, D) Similar experiment to that in (A) and (B), except plants were infiltrated with AZC.

Supplemental Figure 7. The accumulation of NMD target RNAs were not generically influenced by heat-shock or AZC treatment

(A) The accumulation of RNA from the pseudogene At5g40920 was measured 1 h after heat-shock and 3 h after infiltration of AZC. Transcript accumulation was measured by qRT-PCR relative to the accumulation of of *EF1a* RNA. The data are the mean of three replicates. Bars= <u>+</u>SD. There was no statistical difference between the samples. (B) Similar experiment to that in (A) except accumulation of RNA from the pseudogene At1g01060 was measured. There was no statistical difference between the samples.

No clear trend was observed in the expression levels of two pseudogenes after heatshock and AZC treatment.

Array element	Log2(Fold Change)		e)	WGeneName	WAccNum
	AZC	HS	, Tun		
Protein folding		-			
250351 at	6.353	8.339	-0.681	17.7 kDa class II HS protein 17.6A (HSP17.7-CII)	AT5G12030
248657 at	5 95	7 2857	-1 071	peptidyl-prolyl cis-trans isomerase	AT5G48570
<u></u>	0.00	1.2001	1.071	DNAJ HS N-terminal domain-	7110010010
262307_at	5.899	8.2432	-1.13	containing protein	AT1G71000
248434_at	5.731	8.3537	-1.354	23.5 kDa mitochondrial small HS protein (HSP23.5-M)	AT5G51440
260248_at	5.51	8.1854	-0.997	HS protein 101 (HSP101)	AT1G74310
263374_at	5.271	6.6641	-0.732	DNAJ HS family protein	AT2G20560
266294_at	5.159	7.1345	-0.806	17.6 kDa class I small HS protein (HSP17.6B-CI)	AT2G29500
252515_at	5.142	8.3814	-0.404	17.4 kDa class I HS protein (HSP17.4- CI)	AT3G46230
256245_at	4.772	6.613	-1.636	Hsp70A	AT3G12580
260978_at	4.717	9.3093	-0.55	17.6 kDa class I small HS protein (HSP17.6C-CI)	AT1G53540
258336_at	4.602	6.3981	-0.063	stress-responsive protein	AT3G16050
050000	4 50 4	7 4707		17.6 kDa class II HS protein	475040000
250296_at	4.501	1.4/8/	-0.464	(HSP17.6-CII)	AT5G12020
256518_at	4.489	5.709	-0.998	expressed protein	A11G66080
254059 at	4 472	8 4883	-0 653	protein (HSP23 6-M)	AT4G25200
248332 at	4 266	5 9204	-1 309	AthSP90 1	AT5G52640
263150 at	4.262	4.7848	-0.74	17.4 kDa class III HS protein (HSP17.4-CIII)	AT1G54050
254839 at	4.203	8.8066	-0.584	stress-inducible protein, putative	AT4G12400
				15.7 kDa class I-related small HS	
249575_at	3.705	8.0845	-0.054	protein-like (HSP15.7-CI)	AT5G37670
250994_at	2.778	2.9872	-0.78	Hsc70-2	AT5G02490
265675_at	2.607	7.1931	-0.097	Hsc70-1	AT2G32120
256983_at	2.283	4.9584	-0.639	chaperonin, putative	AT3G13470
050000	0.400	0.070	0.000	DNAJ HS N-terminal domain-	4 70 0 4 4000
256999_at	2.132	2.372	-0.386		AT3G14200
253778_at	1.583	2.4194	-0.244	DNAJ HS family protein	A14G28480
261655 at	1.613	4.2709	-0.105	cvclophilin-type family protein	AT1G01940
Transcripti	on/transla	tion	0		
266841 at	5 998	7 1184	-2 074	HsfA2	AT2G26150
252081 at	5 368	7 6477	-0.48	HsfA7a	AT3G51910
202001_01	0.000	1.0411	-0.40	multiprotein bridging factor	A10001010
258133_at	4.707	5.5459	-0.823	1,conserved transcriptional coactivator.	AT3G24500
250304_at	4.358	4.8165	-0.126	elongation factor 1B alpha-subunit 1 (eEF1Balpha1)	AT5G12110
250781_at	3.613	5.7006	-0.144	DREB2A	AT5G05410
267026_at	3.413	4.3261	0.017	a member of the DREB subfamily A-2	AT2G38340
261081_at	2.949	5.043	-0.70 <mark>5</mark>	transformer serine/arginine-rich ribonucleoprotein, putative	AT1G07350

Supplemental Table 1 List of the genes up-regulated by CPR.

247509_at	2.68	2.0825	-0.433	HSFB2A	AT5G62020
254878_at	2.635	4.2306	-0.398	HSFB2B	AT4G11660
246981_at	2.408	2.9631	-0.071	bZIP protein	AT5G04840
246214_at	2.348	3.7324	-0.42	HSFB1	AT4G36990
264255_at	2.069	3.6136	0.1286	SF2/ASF-like splicing modulator (SRP30)	AT1G09140
262548_at	1.999	1.8639	-0.362	An Argonaute gene	AT1G31280
259649_at	1.982	2.5115	-0.075	TATA-binding protein-associated factor TAFII55 family protein	AT1G55300
250424_at	1.974	3.2877	0.9483	DNA-binding bromodomain-containing protein	AT5G10550
251793_at	1.945	2.9583	0.4054	regulator of chromosome condensation (RCC1) family protein	AT3G55580
259666_at	1.815	3.5904	-0.155	SC35-like splicing factor, 33 kD (SCL33)	AT1G55310
266715_at	1.699	1.0004	0.2144	RNA recognition motif (RRM)- containing protein	AT2G46780
253249_at	1.668	1.9142	-0.1	GATA transcription factor 3	AT4G34680
261663_at	1.575	4.6071	-0.632	myb family transcription factor	AT1G18330
260468_at	1.798	1.5905	-0.234	SNF2 domain-containing protein	AT1G11100
261564_at	1.538	2.0024	0.7574	no apical meristem (NAM) family protein	AT1G01720
Protein dec	radation				
261265_at	3.323	4.2637	-0.911	zinc finger (C3HC4-type RING finger) family protein	AT1G26800
262656_at	3.316	2.9735	-1.014	zinc finger (C3HC4-type RING finger) family protein	AT1G14200
248040_at	2.693	1.997	-0.342	zinc finger (C3HC4-type RING finger) family protein	AT5G55970
265077_at	2.477	3.2041	-0.338	zinc tinger (C3HC4-type RING finger) family protein	AT1G55530
264465_at	2.383	2.4537	-0.328	E3 ubiquitin ligase SCF complex subunit SKP1/ASK1 (At18)	AT1G10230
264758_at	1.801	2.3901	0.4547	F-box family protein	AT1G61340
250036_at	1.729	5.6886	-0.02	U-box domain-containing protein	AT5G18340
257748_at	1.705	1.1005	0.3439	U-box domain-containing protein	AT3G18710
245828_at	1.575	1.3529	-0.406	zinc finger (C3HC4-type RING finger) family protein	AT1G57820
247125_at	1.53	1.5384	-0.346	zinc finger (C3HC4-type RING finger) family protein	AT5G66070

AGI number / gene name At1g10230 Replicate 1	Heat shock		
At1g10230 Replicate 1	-	AZU	Tunicamycin
	4.4527	2.1027	0.5147
SKP1/ASK1 Replicate 2	2.4807	2.3017	0.7477
Replicate 3	2.3358	2.1833	0.2135
p-value	0.0228	0.0003	0.0431
At5g66070 Replicate 1	2.4553	1.3558	0.6783
zinc finger (C3HC4-type RING finger)			
family protein Replicate 2	1.9522	2.2533	0.6067
Replicate 3	1.8287	0.8018	-0.7828
p-value	0.0042	0.0368	0.3792
At1g26800 Replicate 1 zinc finger (C3HC4-type RING finger)	6.4757	3.0843	-0.2750
family protein Replicate 2	3.9540	3.6727	0.3120
Replicate 3	5.5190	3.6483	-0.6595
p-value	0.0093	0.0015	0.7305
At1g14200 Replicate 1	5.7810	4.1443	-1.5913
zinc finger (C3HC4-type RING finger)			
family protein Replicate 2	4.2325	3.9800	-0.1997
Replicate 3	4.3037	4.2147	-1.2383
p-value	0.0055	0.0001	0.9316
At1g55530 Replicate 1 zinc finger (C3HC4-type RING finger)	5.5077	3.3430	-0.3723
family protein Replicate 2	4.8818	2.0833	0.4240
Replicate 3	4.5188	2.0997	-0.4210
p-value	0.0017	0.0133	0.6514
At5g04840 Replicate 1	6.8277	4.0638	0.8600
bZIP protein Replicate 2	5.4743	3.4560	0.4650
Replicate 3	5.4063	3.0130	0.0580
p-value	0.0030	0.0037	0.0924
At1g11100 Replicate 1	3.0420	4.0097	-0.0253
SNF2 domain-containing protein Replicate 2	4.3707	2.8303	0.6660
Replicate 3	1.1897	2.0603	-1.2200
p-value	0.0449	0.0173	0.6203
At1g09140 Replicate 1	5.1927	3.3607	1.3083
SF2/ASF-like splicing modulator (SRP30) Replicate 2	5.2823	1.8280	0.5665
Replicate 3	4.1763	2.3760	0.1040
p-value	0.0026	0.0151	0.1004
At1g55310 Replicate 1	4.4338	1.6637	0.8370
SC35-like splicing factor, 33 kD (SCL33) Replicate 2	5.4192	1.4917	1.3812
Replicate 3	3.9757	0.6913	-0.6797
p-value	0.0042	0.0252	0.2465
At1g07350 Replicate 1	6.9460	4.2900	0.6587
transformer serine/arginine-rich			
ribonucleoprotein, putative Replicate 2	6.7397	2.6297	0.5482
Replicate 3	5.6807	2.0610	-1.9650
p-value	0.0018	0.0232	0.6021
At5g62020 Replicate 1	3.9107	3.6507	-0.6540
HSFB2A Replicate 2	1.7153	3.7423	0.2123
Replicate 3	2.0720	3.5600	-1.3123
p-value	0.0318	0.0001	0.8418

Supplemental Table 2 Validation of selected gene's expression by qRT-PCR.

At2g38340	Replicate 1	5.1270	2.5740	0.2197
ERE/AP2 transcription factor family	Renlicate 2	5 4787	3 8757	0 0082
		0.4707	0.0707	0.0002
	Replicate 3	3.8450	3.3290	-0.0790
	p-value	0.0052	0.0066	0.3161
At5g05410	rep1	7.9750	4.8930	-0.3457
DREB2A	rep2	4.6360	3.7282	-0.9575
	rep3	6.6103	5.7670	-1.7787
	p-value	0.0111	0.0074	0.9341

Supplemental Table 3 HSE representation in genes up-regulated by both HS and

AZC.

1000 bp	Total	HSE			
upstream of	number of				
start codon	the gene				
		gene	percentage	Z score	p-value
HS-only	785	35	4.46	6.15	3.87E-10
upregulated					
genes					
HS-AZC	153	23*	15.03	12.86	3.78E-38
upregulated					
genes					
Genome	33282	553	1.66		

* 38% of these genes encode transcription factors. These are: -

At2g26150 HSFA2

At3g51910 HSFA7a

At4g11660 HSFB2b

At5g62020 HSFB2a

At1g18330 Early phytochrome responsive-1, EPR1, MYB-TF.

At5g04410 NAC family hypothetical TF

At5g05410 DREB2, DREB2a

Supplemental Table 4 Primers used for this study.

Primers used	d for (q)RTPCR	
EF1a	EF1aF*	TGAGCACGCTCTTCTTGCTTTCA
	EF1aR	GGTGGTGGCATCCATCTTGTTACA
HSP70	HSP70ARTF	CTCTGTTTGCTTGAGATTCTAGTTGG
	HSP70ARTR	ATGCCCAGTCGTCTTTCATAGGTC
HSP70B	HSP70BRTF	GCGTGTTTAGTGTGTTAAGACGAA
	HSP70BRTR	CTCGAAACAACTGAAACAGCTGAA
Bip3	Bip3RTF	GAGTGGTTAGAAGAGAATGTGAATG
	Bip3RTR	CAAATCCTATAGCTAACCGACTC
HsfA2II	HsfA2-AZCF	TTATTCGTCAGCTCAATACTTATATGGGTTTC
	HsfA2-exonR	CACATGACATCCCAGATCCTTGC
HsfA2	HsfA2-HSF	TCGTCAGCTCAATACTTATGGATTC
	HsfA2-exonR	CACATGACATCCCAGATCCTTGC
HsfA3	HsfA3F	CTGCAGAAACAACAAGTGATG
	HsfA3R	TAGTTCACCCGATAAGAAACG
HsfA7a	HsfA7aF	GAGTCAGCAAAGAGGAAAAGAGG
	HsfA7aR	CCATCTAGTTAGGAGGTGGAAG
TuMV	TuMV-RTF	GATCCACCGTCACCACAG
	TuMV-RTR	CTTAGCAAGGGACCCTGCTCCAC
TCV	TCVP28-RTF	CCAGGGATCTGGGCTAGTAGTAGTG
	TCVP28-RTR	CCTCTTCCGTTCCTACCAACCTATC
at1g01060	qRTat1g01060F	ACAGGATGATTACCGTTCGTTTC
(Arciga-	qRTat1g01060R	CAATGGCAGTTATACTTGGAGGAG
Reyes et		
<i>al.</i> , 2006)		
at5g40920	qRTat5g40920F	GCTGGAGAACACTCTCTAAACTGG
	qRTat5g40920R	TGCCAATCATCTTCACATCATCACACTC

*F = forward primer; R = Reverse primer

Supplemental Table 4 continued

Primers used	d for qRT-PCR to va	lidate the microarray data		
At1g10230	At1g10230RTF	TCGAGTACGCGAAGATGCAC		
	At1g10230RTR	ATGTAATCAGCAACCGTCTGG		
At5g66070	At5g66070RTF	CCACCTACCATGCATCGACAA		
	At5g66070RTR	CAATGATTGGTGCATCAAAATCTG		
At1g26800	At1g26800RTF	GAAACAGTGATGGTGTTGAGTCCG		
	At1g26800RTR	GAGGATTATGGAGATTCCTGAGC		
At1g14200	Atlg14200RTF	CGTGTCCTATGTGTAGGTATGAG		
	At1g14200RTR	AAACCTAGCCCCATGTTGCATC		
At1g55530	At1g55530RTF	TTAGCACCTTGTTCTCCTCGTCG		
	At1g55530RTR	ATGTAGCATTCAACCAAATCTGAGA		
At5g04840	At5g04840RTF	TAGGCATGTTGCAGACGGTGGAAG		
	At5g04840RTR	TGGCTATTCTCCAGGGACAGTGTT		
At1g11100	Atlg11100RTF	GAAGAAAAGATGGTGGCTTCTGC		
	Atlg11100RTR	GTTTGTCAGAAGAGCTTCAATTGG		
At1g09140	At1g09140RTF	CAAGATCGAATTCTCCAGTTTCACC		
	At1g09140RTR	GGAGCCTGAGAAGCTTGAGACG		
At1g55310	At1g55310RTF2	GCTTGACTCAATGAGGGGAAGGAGC		
	At1g55310RTR2	GCAATCATGGCGTAGATTGCGAACC		
At1g07350	At1g07350RTF	CGTAGCATATCCCCAAGGAAG		
	At1g07350RTR	TGTTATGGGCTGACGGATCT		
At5g62020	At5g62020RTF	GGACGAGAAGTGAAGGTGTTC		
	At5g62020RTR	GACACGTGCTCTGCTTGTC		
At2g38340	At2g38340RTF	TCAGAGGAAGGTTACAGCTATG		
	At2g38340RTR	GATGCAGCATAAATCCTAAGCTAG		
At5g05410	At5g05410RTF	GAACAGTGTTGCCAACGGTTCATAC		
	At5g05410RTR	CAAATCCAAAAAGCTTCATATTG		
At2g15130	At2g15130RTF	GGTGGTGATAGGTGGGATCAGGGTTACG		
	At2g15130RTR	GTTGGCCTTGTACTCTCTCCAGAGTTG		

Primers used	d for promoter::GUS	constructs		
HSP70A	FA6	ACCCGCCATGGTTAGAGATCAG		
337bp pro	FA27	TAAAGGTACCATTGGGTGATGAAATAAC		
HSP70B	FA8	GATTTCGTCGCCATGGTTGCTA		
340bp pro	FA35	TAATGGTACCCTTACACTGGGCCTTTTATTC		
Primers use	d for site directed	mutagenesis		
AtoB	AtoBF*	CTTTACTCGTGAACTCTCTTGTAAGCTCTTTGCCGA		
		СС		
	AtoBR	GGTCGGCAAAGAGCTTACAAGAGAGTTCACGAGTAA		
		AG		
AKO	AKOF	CTTTACTCGTTAACGTTCTCTAAAGCTCTTTGCCGA		
		сс		
	AKOR	GGTCGGCAAAGAGCTTTAGAGAACGTTAACGAGTAA		
		AG		
BtoA	BtoAF	GGTGAATCCAGAACGTTCTCGAACGTTTGCGCGATT		
		TCTC		
	BtoAR	GAGAAATCGCGCAAACGTTCGAGAACGTTCTGGATT		
		CACC		
ВКО	BKOF	GGTGAATCCATAACTCTCTTTTACGTTTGCGCGATT		
		TCTC		
	BKOR	GAGAAATCGCGCAAACGTAAAAGAGAGTTATGGATT		
		CACC		
Primers use	d for cloning of He	at shock factors		
HsfA2	attB1HsfA2FLF	AAAAAGCAGGCTCCACCATGGAAGAACTGAAAGTGG		
		AAIG		
	attB2HsfA2FLR	AGAAAGCTGGTgTTAAGGTTCCGAACCAAG		

AGAAAGCTGGGTtTCACTCCATAGTCCCCAAGCTTG

AAAAAGCAGGCTCCACCATGATGAACCCGTTTCTCC

AGAAAGCTGGGTtTTAGGAGGTGGAAGCCAAACTC

Supplemental Table 4 continued

* F= Forward primer; R=Reverse primer

attB2HsfA2DNR

attB1HsfA7aFLF

attB2HsfA7aFLR

HsfA2

HsfA7a

truncated