
Enumeration of Condition-Dependent Dense

Modules in Protein Interaction Networks

Supplementary Text

E. Georgii, S. Dietmann, T. Uno, P. Pagel, K. Tsuda

We present a method for systematic module discovery in biological net-
works. In the first section, we describe our algorithmic approach in detail.
In the second section, we give some further information on our experiments
and additionally discuss the results of a comparative analysis of module
finding methods on the human interaction network.

1 Method

1.1 Problem Definition

We propose an enumerative approach to discover modules in protein-protein
interaction networks. Formally, we tackle the problem by extracting all
densely connected node sets from a weighted undirected graph. The nodes
of this graph correspond to proteins and edge weights indicate the confidence
for an interaction between two proteins. In section 2.1 we will describe how
the edge weights were computed in this study.

Let us consider an undirected weighted graph with node set V . Let
W = (wij)i,j∈V be the corresponding matrix representation, containing the
weights of the given edges and zero entries otherwise. In the following we
assume wij ≤ 1. Then the density of a node subset U ⊂ V with respect to
W is defined as

ρW (U) =

∑
i,j∈U,i<j wij

|U |(|U | − 1)/2
. (1)

For non-negative edge weights, the value of ρW (U) lies between 0 and 1.
In the case of unweighted graphs, W is a binary matrix and the density
corresponds to the actual number of edges within U , divided by the possible
number of edges. We define ρW (∅) = 1 and ρW (U) = 1 for |U | = 1. For

1

convenience, we usually write ρ(U) instead of ρW (U), as W is given as input
and remains unchanged throughout the method.

Now we can define the problem of dense module enumeration as follows.

Definition 1 (Dense Module Enumeration). Given a graph with node set
V and weight matrix W , and a density threshold θ > 0, find all modules
U ⊂ V with ρW (U) ≥ θ.

Here we use the term module to denote the induced subgraph corre-
sponding to a node set.

1.2 Enumeration Algorithm

A canonical strategy to solve set enumeration tasks is to start with the
empty set and then iteratively form larger sets by adding one element at a
time; if it is evident that no further solutions can be derived from a certain
set, the process of extension is stopped, i.e. unnecessary parts of the search
space are pruned. One famous example is itemset mining [1]. It solves
the problem of finding all itemsets which occur more than k times in a
transaction database. In this context, pruning is based on the fact that
subsets have at least the same occurrence frequency as their superset. This
property is called anti-monotonicity:

Definition 2 (Anti-Monotonicity). A criterion f is anti-monotonic, if f(U ′) ≥
f(U) for all U ′ ⊂ U .

Clearly, this property does not hold true for our density criterion. More
generally, given the density of some module, it is not possible to make state-
ments about the density of submodules or supermodules. For illustration,
consider the modules in Fig. 1. Submodules of a module can have larger
density as well as lower density than the module itself. Likewise, there can
exist supermodules with higher density as well as supermodules with lower
density.

However, it is possible to traverse the search space in a way that allows
for straightforward pruning. In fact, we define a tree-based parent-child rela-
tionship between modules such that along each path from the root to a leaf,
the module size is increasing, whereas the module density is monotonically
decreasing. Technically, our algorithm adopts the reverse search paradigm
[2]: in each iteration, we generate all direct supersets of the current module
and select those which are indeed its children. Due to the monotonicity
guarantee in our search tree, only children that fulfill the density criterion

2

have to be further processed. To describe our approach in more detail, we
need the definition of weighted degree.

Definition 3 (Weighted Degree). For u ∈ U ⊂ V , the weighted degree of u
with respect to U is defined as

degU (u) =
∑

j∈U,j 6=u

wuj (2)

Note that the weighted degree depends on the given weight matrix W . As
W remains fixed during the whole algorithm, we omit an explicit reference
to W in our notation.

The following lemma states a fundamental property of ρ.

Lemma 1. Let v ∈ U be a node with minimum weighted degree in U , i.e.
∀u ∈ U : degU (u) ≥ degU (v). Then, ρ(U \ {v}) ≥ ρ(U).

Proof.

ρ(U \ {v})− ρ(U)

=

∑
i,j∈U\{v},i<j wij

(|U | − 1)(|U | − 2)/2
−

∑
i,j∈U,i<j wij

|U |(|U | − 1)/2

=
1
2

∑
u∈U\{v} degU\{v}(u)

(|U | − 1)(|U | − 2)/2
−

1
2

∑
u∈U degU (u)

|U |(|U | − 1)/2

=
1
2

(∑
u∈U degU (u)− 2 · degU (v)

)
(|U | − 1)(|U | − 2)/2

−
1
2

∑
u∈U degU (u)

|U |(|U | − 1)/2

=
1
2

∑
u∈U degU (u)− degU (v)−

1
2

P
u∈U degU (u)

|U |(|U |−1)/2 ((|U | − 1)(|U | − 2)/2)

(|U | − 1)(|U | − 2)/2

=
1
2

∑
u∈U degU (u)− degU (v)− 1

2

∑
u∈U degU (u) · |U |−2

|U |

(|U | − 1)(|U | − 2)/2

=
1
2

∑
u∈U degU (u)

(
1− |U |−2

|U |

)
− degU (v)

(|U | − 1)(|U | − 2)/2

=
1
2

∑
u∈U degU (u) 2

|U | − degU (v)

(|U | − 1)(|U | − 2)/2

=
1
|U |

∑
u∈U degU (u)− degU (v)

(|U | − 1)(|U | − 2)/2

≥
1
|U | (|U | · degU (v))− degU (v)

(|U | − 1)(|U | − 2)/2
= 0

3

0.9

0.1

C D

B A

0.9

0.5
1.0

Module Density

{A,B,C,D} 0.57

{A,B,D} 0.33

{A,C,D} 0.93

{A,D} 0.90

Figure 1: Densities of some modules in an example graph, showing that the
density criterion is neither anti-monotonic nor monotonic.

The inequality holds because of the assumption that v is a node with min-
imum weighted degree in U , i.e. degU (v) ≤ degU (u) for u ∈ U . Altogether
it follows that ρ(U \ {v}) ≥ ρ(U).

This property is the key for defining the search tree. In order to fix a
unique parent for each module, we introduce a function ord, which defines
a strict total ordering on the nodes,i.e. for each node pair u, v with u 6= v
either ord(u) > ord(v) or ord(u) < ord(v) holds. With this, we define the
parent-child relationship for modules as follows.

Definition 4 (Parent-Child Relationship). Let U be a module and v ∈ V \U .
U∗ := U ∪ {v} is a child of U if and only if

∀u ∈ U : (degU∗(v) < degU∗(u))∨(degU∗(v) = degU∗(u) ∧ ord(v) < ord(u)) .

In other words, we obtain the parent of a certain module by removing
the smallest of the nodes with minimum weighted degree.

Obviously, we cannot directly derive all children of a given module U
with size k. Instead, we have to check for all possible extended modules of
size k + 1 whether U is their parent or not (reverse search principle). From
the lemma we know that each module has a smaller or equal density than
its parent. That means, if the density check fails for a certain module, none
of its descendants can satisfy it. Based on this, the DME algorithm starts
with the empty set and recursively generates children as long as the density
threshold is not violated (Alg. 1). In other words, it performs a depth-first
traversal of the search tree, pruning whenever possible and thereby avoiding

4

the generation of non-dense descendants. Since we investigated all dense
modules which have the empty set as ancestor, the result set is complete.
Fig. 2 shows the module tree traversed in an example run of DME.

In a straightforward implementation, we use an array of length |V | where
we store the weighted degree of each node with respect to the current mod-
ule U ; more precisely, it contains the value degU (u) for nodes u ∈ U , and
the value degU∪{v}(v) for nodes v ∈ V \U . Update of this array after having
added one node requires O(|V |) operations using the matrix W . In each
iteration of the algorithm, we first check for each node v not included in
the current module U whether the density criterion holds for U ∪ {v} (if we
compute the density incrementally using degU∪{v}(v), a single density check
takes constant time). If that is the case, we check the conditions of U ∪ {v}
being a child of U according to definition 4 (this requires a temporary up-
date of |U | array entries; if the entries of W can be accessed directly, this
corresponds to O(|U |) operations).1 Therefore, each iteration of the algo-
rithm takes at most O(|V |+ |V \U | · |U |) time. This is also an upper bound
for the longest computation time between two outputs (also called delay).
To see this, we introduce a small modification of the algorithm according to
the odd-even output method [6]. If the recursion depth is odd, we output
the solution before the recursive calls; if the recursion depth is even, we
do it afterwards. Then any three consecutive iterations of the algorithm
yield at least one solution. Hence, DME is a polynomial-delay algorithm.
The delay is the common time complexity measure for enumeration algo-
rithms because by the definition of enumeration tasks, there might exist an
exponential number of solutions.

By changing the density threshold, the user can regulate the size of the
output. Also note that the computation can easily be parallelized. Finally,
dense modules that are subsets of other solutions are not so informative; we
call them non-maximal. While these redundant results could be eliminated
by checking for each new module all previous solutions, it is possible to
identify locally maximal modules without requiring additional computation
or storage, as shown in Alg. 1. A module U is locally maximal if and only if
for all v ∈ V \ U , U ∪ {v} does not satisfy the minimum density threshold.
Although a module with this property could still be non-maximal, it happens
rarely in practice.

1For weight matrices containing only non-negative values, an additional speed-up is
possible by keeping track of the minimum weighted degree value in U , d∗U , and applying
some special rules: If degU∪{v}(v) < d∗U , we can infer directly that U ∪ {v} is a child of
U . If degU∪{v}(v) > d∗U + 1, then U ∪ {v} cannot be a child of U (assuming a maximum
weight of 1).

5

Algorithm 1 Dense module enumeration for node set V , weight matrix W ,
and minimum density θ. U represents the current module. DME is called
with U = ∅.
1: DME (V,W, θ, U) :
2: locallyMaximal = true
3: for each v ∈ V \ U do
4: if ρW (U ∪ {v}) ≥ θ then
5: locallyMaximal = false
6: if U ∪ {v} is child of U then
7: DME (V,W, θ, U ∪ {v})
8: end if
9: end if

10: end for
11: if locallyMaximal then
12: output U
13: end if

1.3 Constraint Integration

Often the user is interested in modules that have certain coherency prop-
erties with respect to side information from additional data sources. We
here consider the case that discrete profiles are attached to each node. For
proteins, the profiles could for instance indicate presence or absence un-
der certain cellular conditions. In this context, a useful requirement would
be that all proteins in a module share the same profile across a subset of
conditions. This can be formalized using minimum frequency constraints.

Definition 5. Let V be again the node set of our graph and U ⊂ V a module.
Let M = (mij)i∈V,j∈C be a side information matrix, where C denotes a set
of conditions. The entries mij take values from a set of discrete states S,
e.g. S = {0, 1}.

Given a state s ∈ S, a condition j ∈ C is said to be s-consistent with
respect to U , if mij = s for all i ∈ U . The number of s-consistent conditions
is denoted by fs(U).

To control the consistency of module profiles, we can fix minimum thresh-
olds for the frequencies fs(U) of the different states s. Without loss of gen-
erality, let us consider the case of binary side information, i.e. S = {0, 1}.
Then the constrained dense module enumeration task is described as follows.

Definition 6. Given a graph with node set V and weight matrix W , a
binary profile matrix M , a density threshold θ > 0, and frequency thresholds

6

n1 and n0, find all modules U ⊂ V such that ρ(U) ≥ θ, f1(U) ≥ n1, and
f0(U) ≥ n0.

To integrate the additional frequency constraints into the search, the
anti-monotonicity property of fs(U) is crucial.

Lemma 2. U ′ ⊂ U ⇒ fs(U ′) ≥ fs(U).

Proof. Each column that is s-consistent with respect to U is also s-consistent
with respect to U ′.

In other words, module extension either reduces the frequency of con-
sistent columns or leaves it unchanged. This is illustrated in Fig. 3. When
extending the module {A,B,C,D,E} by node F, the number of consistently
green columns (f1) shrinks, whereas the number of consistently black columns
(f0) stays equal. To determine the frequencies fs for {A,B,C,D,E,F}, only
the columns that are s-consistent with respect to {A,B,C,D,E} need to be
considered.

The lemma implies that if a module does not satisfy the frequency con-
straints, no extension of it can satisfy them. Thus, we can use the frequency
constraints as additional pruning criteria. That means we simply add them
as conditions to line 4 of Alg. 1. By this, the search is guided directly to
the modules of interest.

2 Experiments

2.1 Interaction Weights

One main challenge in the analysis of protein interaction networks are false
positive edges, i.e. interactions that arise from experimental artifacts or
measurement errors. To deal with this, we computed edge weights based
on the experimental evidence. A large variety of scoring schemes are con-
ceivable; here, we followed the method in [4]. For that purpose, we first
determined for each individual interaction the set of sources supporting it.
The MPact database reports for each measured interaction the set of exper-
imental techniques. Also in the IntAct, MINT, DIP, and BIND databases,
the corresponding experimental methods are listed, following the PSI-MI
standard. In these cases, we considered each experimental technique as sep-
arate source. Further, the HPRD data set and the core data sets from Gavin
[3] and Krogan [5] were labeled as individual sources.

7

Given a set of sources as evidence for a certain interaction, we estimate
a reliability score using gold standard sets of correct and incorrect protein
pairs. For the gold standard set of positive examples, we collected protein
pairs that share the same MIPS functional category2. To avoid introducing
a bias in our precision-recall analysis, we excluded the pairs which belong
to MIPS reference complexes used for the evaluation. So the positive set is
not specifically tailored to currently known protein complexes, but rather
represents functional relatedness in a more general sense. Nevertheless, our
module analysis reproduces reference complexes with high accuracy (see
main paper). For the negative set, we used proteins with different subcellular
localization as given in the Gene Ontology database3. To score a specific
set of sources, we selected all interactions being associated with exactly this
source set. We then computed the true positive rate and the false positive
rate for this interaction set with respect to the gold standard sets. More
precisely, the true positive rate is the fraction of positive pairs covered by
the interaction set, and the false positive rate is the fraction of negative
pairs covered by it. The ratio between the true positive rate and the false
positive rate is assigned as score to the corrresponding interactions.

If there did not exist any experimental support for a protein pair, we gave
a score of 0. Before scaling the scores to the range from 0 to 1, we truncated
the score distribution as follows. To avoid that a few large positive outliers
dominate the analysis, we fixed t = 2 as an upper threshold for reliability
scores, i.e. all ratios above or equal to that value were considered as highly
reliable and received the top score of 2 (11% of the yeast interactions).
Equivalently, interactions with ratio scores below 1/t = 0.5 were considered
as spurious and discarded (set to zero). Now we normalized all scores with
the maximum score value t (in our case 2), obtaining the final interaction
weights between 0 and 1. For example, a source set producing equal fractions
of false and correct pairs would yield a ratio of 1 and final interaction weights
of 0.5. The resulting network for yeast consisted of 3559 nodes with 14212
non-zero interactions having an average weight of 0.67. The human network
contained 9371 nodes and 32048 non-zero interactions having an average
weight of 0.47.

2.2 Comparative Analysis for Yeast

This section contains some add-ons to the comparative analysis of the yeast
network described in section 3.2 of the main paper.

2http://mips.gsf.de/projects/funcat
3http://www.geneontology.org/

8

2.2.1 Parameter Setting

For each method, we tested a wide range of parameters and selected the
configuration with the largest area under the precision-recall curve for the
ranked results. For DME, we varied the density threshold from 1.0 to 0.955
using decrements of 0.005. As there was a large difference in the number
of solutions between 0.96 and 0.955, we further analyzed this range using
decrements of 0.001. The best result was achieved at 0.957. Clique and CPM
take as parameter a minimum edge weight threshold to select the edges which
are used for computing the cliques. We varied this threshold from 1 to 0.35,
using decrements of 0.05 (optimal setting for Clique: 0.4). In addition, CPM
has an integer parameter k to control the clique size and the required node
overlap for joining cliques, which was tested in the default range between
3 and the maximum clique size (optimal setting for CPM: edge selection
threshold 0.9, k=9). This parameter k also exists for CPMw, but instead
of preselecting edges, CPMw expects a threshold for the geometric mean
of the edge weights in a clique. Only cliques satisfying this threshold are
further processed. We tried the same thresholds as for DME; k was tested
from 3 to 7, as the filtering step gets very expensive for higher values. We
obtained the best results for k=6 and clique selection threshold 0.97. For
MCL, there exist two main parameters affecting the cluster granularity:
the inflation parameter, which we varied from 1.5 to 8 using increments of
0.5, and the centering, varied between 1 and 5. Furthermore, we set the
parameter to retain potentially generated cluster overlaps. Here, the best
result was obtained for inflation 3.0 and centering 2.0.

2.2.2 Overlap Precision-Recall Analysis

DME and Clique produced heavily overlapping modules, that means a large
number of interactions were shared by several modules (see Table 1 in the
main paper). To evaluate the accuracy of interactions in module overlaps, we
sorted them according to the number of modules in which they occur (in de-
scending order). Then we computed precision and recall values with respect
to the MIPS protein complexes. Figure 4 shows the resulting precision-recall
curves. Remarkably, the accuracy of DME interactions clearly increases with
the number of modules in which they occur. However, this is not the case
for Clique: while middle-ranked interactions are more accurate than low
ranked interactions, the top interactions are less reliable. The reason is that
Clique modules are solely based on the topology, whereas DME respects
edge weights and therefore mainly reuses dense core modules, i.e. node sets

9

that are densely connected by high-weight edges.

2.3 Comparative Analysis for Human

Similarly to the experiments on the yeast interaction network we described
in section 3.2 in the main paper, we compared different module detection
methods on the human interaction network. For validation, we used the set
of human complexes published in [7].

2.3.1 Parameter Setting

We considered the same five module detection methods as in the yeast ex-
periments: DME, Clique, CPM, CPMw, and MCL. For each of them, we
tested a range of parameters. In each run, we sorted the results and cal-
culated the precision-recall curve exactly as in the case of yeast. Finally,
we selected for each method the parameter configuration which yielded the
highest value for the area under the precision-recall curve.

For DME, we checked density thresholds between 1.0 and 0.8 in decre-
ments of 0.01. The best results were obtained with 0.94. Like for the yeast
data, the edge selection threshold of Clique and CPM was varied from 1.0
to 0.35 and the clique size parameter k of CPM was checked in the whole
range between 3 and the maximum detected clique size. Clique was optimal
for the edge selection threshold 0.35, and CPM was optimal for the edge
selection threshold 0.35 and k=6. In the case of CPMw, the clique selection
threshold was set to the same values as the DME density threshold (from 1.0
to 0.8 in decrements of 0.01) and k was varied from 3 to 7. Here, the optimal
configuration was achieved for a clique selection threshold of 0.81 and k=6.
Finally, the MCL parameters were tested in the same range as for the yeast
experiments, the inflation parameter from 1.5 to 8 using increments of 0.5
(best value: 2.0) and the centering parameter from 1.0 to 5.0 (best value:
3.0).

2.3.2 Results

Figure 5 shows the precision-recall curves we obtained for the different mod-
ule detection methods. In general, the performance is much worse than on
the yeast data, irrespective of the chosen method. This can be explained
by the fact that the human data are less comprehensive and, consequently,
known complexes are less exposed with respect to the density criterion.
DME has a high peak in the beginning, but otherwise its precision up to a
recall value around 0.04 is comparable to CPM and CPMw. Interestingly,

10

CPM and CPMw achieve this by producing very few modules, one of which
is very large, whereas DME detects many small modules and therefore cap-
tures more diverse known complexes (see also Table 1). Clique is always
below DME, but for higher recall values, DME is significantly outperformed
by MCL, which also yields the largest area under the curve (see Table 1).
Again, this is an effect of the data sparseness: one cannot gain much ac-
curacy by explicitly considering the module density, therefore partitioning
methods, which take the global network structure into account, are advan-
tageous.

In Table 1, we collected various statistics for the results of the different
methods, like in the yeast analysis. MCL required the longest computa-
tion time. To determine the number of distinct modules for each method,
strongly overlapping modules were grouped together. More precisely, a mod-
ule was added to a certain group if it matched another module of the group,
according to the matching criterion defined in the main paper. DME mod-
ules produced the highest number of matches to distinct known complexes,
closely followed by Clique. With respect to partially recovered complexes
(i.e. complexes from which at least one protein pair was contained in a mod-
ule), Clique is leading, followed by MCL and DME. Moreover, we performed
for each distinct module a GO enrichment analysis using the TANGO tool
[8] (for each group of overlapping modules, we took the top-ranking module).
The number of enriched modules was generally very low: CPM and CPMw
produced only very few modules, and the other methods predicted mainly
modules which are too small to satisfy the enrichment threshold, irrespective
of their purity. Among the top-50 distinct modules, approximately one half
is enriched. Regarding the number of protein pairs in the overlaps between
different modules, the results are negligible for all methods except DME and
Clique. Although the number is much higher for Clique, the area under the
precision-recall curve is not that different, which means that overlapping
interactions of DME are more accurate. However, the accuracy is generally
not higher than for the total set of predicted interactions (at comparable
recall levels). A reason for this is that the overlaps tend to be very small.
Finally, the overlapping modules of Clique and DME also recovered a large
number of overlaps between known complexes (see section 3.2 of the main
paper for details on our measure).

11

Table 1: Module statistics of the comparative analysis on the human net-
work.

DME Clique CPM CPMw MCL
distinct modules 2321 2982 9 3 2092
average size of distinct modules 2 3 12 19 3
raw modules 3005 3420 9 3 2093
average size of raw modules 3 3 12 19 3
matched complexes 136 133 18 1 113
average complex size 3 4 11 32 4
partially recovered complexes 378 403 77 32 387
predicted interactions 3925 7055 1131 1026 6616
area under prec.-rec. curve (AUC) 0.025 0.021 0.019 0.015 0.030
enriched distinct modules 24 58 8 3 64
enriched among top-50 23 25 - - 21
overlapping proteins 970 1225 3 0 103
overlapping interactions 428 2405 3 0 7
AUC for overlapping interactions 0.0046 0.0055 0.0002 - 0.0000
recovered complex overlaps 942 1618 6 0 0
running time (in seconds) 24 2 2 12 107

References

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB ’94: Proceedings of the
20th International Conference on Very Large Data Bases, pages 487–499,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[2] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete
Appl. Math., 65(1-3):21–46, 1996.

[3] A. C. Gavin, P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch,
C. Rau, L. J. Jensen, S. Bastuck, B. Dumpelfeld, A. Edelmann,
M. A. Heurtier, V. Hoffman, C. Hoefert, K. Klein, M. Hudak, A. M.
Michon, M. Schelder, M. Schirle, M. Remor, T. Rudi, S. Hooper,
A. Bauer, T. Bouwmeester, G. Casari, G. Drewes, G. Neubauer, J. M.
Rick, B. Kuster, P. Bork, R. B. Russell, and G. Superti-Furga. Pro-
teome survey reveals modularity of the yeast cell machinery. Nature,
440(7084):631–6, 2006.

[4] Ronald Jansen, Haiyuan Yu, Dov Greenbaum, Yuval Kluger, Nevan J
Krogan, Sambath Chung, Andrew Emili, Michael Snyder, Jack F Green-
blatt, and Mark Gerstein. A Bayesian networks approach for predicting

12

protein-protein interactions from genomic data. Science, 302(5644):449–
53, 2003.

[5] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez,
M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E.
Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev,
F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu,
C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi,
N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Lam, G. But-
land, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J. S. Weiss-
man, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak,
A. Emili, and J. F. Greenblatt. Global landscape of protein complexes
in the yeast saccharomyces cerevisiae. Nature, 440(7084):637–43, 2006.

[6] Shin-Ichi Nakano and Takeaki Uno. Constant time generation of trees
with specified diameter. In LNCS 3353, pages 33–45, 2004.

[7] Andreas Ruepp, Barbara Brauner, Irmtraud Dunger-Kaltenbach, Goar
Frishman, Corinna Montrone, Michael Stransky, Brigitte Waegele,
Thorsten Schmidt, Octave Noubibou Doudieu, Volker Stumpflen, and
H. Werner Mewes. CORUM: the comprehensive resource of mammalian
protein complexes. Nucl. Acids Res., 36(suppl 1):D646–650, 2008.

[8] Ron Shamir, Adi Maron-Katz, Amos Tanay, Chaim Linhart, Israel Ste-
infeld, Roded Sharan, Yosef Shiloh, and Ran Elkon. Expander - an
integrative program suite for microarray data analysis. BMC Bioinfor-
matics, 6(1):232, 2005.

13

0.9

0.10.7

C D

B AE

0.9

0.5
1.0

{A,B,C}(0.53) {A,C,D}(0.93) {A,C,E}(0.33) {A,B,D}(0.33) {A,D,E}(0.30) {B,C,D}(0.47) {C,D,E}(0.30) {A,B,E}(0.27) {B,C,E}(0.40) {B,D,E}(0.23)

{A,B}(0.10) {A,C}(1.00) {B,C}(0.50) {A,D}(0.90) {B,D}(0.00) {C,D}(0.90) {A,E}(0.00) {B,E}(0.70) {C,E}(0.00) {D,E}(0.00)

{A}(1.00) {B}(1.00) {C}(1.00) {D}(1.00) {E}(1.00)

{A,B,C,D}(0.57) {A,C,D,E}(0.47)

{}

ord(A) < ord(B) < ord(C) < ord(D) < ord(E)

Figure 2: Module tree traversed by DME for the given input graph and
density threshold 0.6. Density values are shown in parentheses. The red
crosses mark the nodes where the tree is pruned.

14

Constraint Integration

Differential expression constraint: e1(U) ≥ n1, and e0(U) ≥ n0

Monotonicity property: e1 and e0 decrease with extension of U

Module f1 f0
ABCDE 2 2
ABCDEF 1 2

A

expressed

non-expressed

B
C
D
E

L

K

M

N

O

P

F

Easy integration: use as additional pruning criterion

Elisabeth Georgii (SCS ’07) Mining Expression-Dependent Modules July 21st, 2007 10 / 16

Figure 3: Frequency of consistent columns before and after module exten-
sion (f1 is the frequency of consistently green columns, f0 the frequency of
consistently black columns).

0 0.05 0.1 0.15 0.2 0.250

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

DME
Clique

Figure 4: Precision-recall curves for overlapping interactions.

15

0 0.02 0.04 0.06 0.080.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

Pr
ec

isi
on

DME
Clique
CPM
CPMw
MCL

Figure 5: Comparative precision-recall analysis for the human interaction
network.

16

