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1 Introduction

Optimization or, without loss of generality, minimization, may be defined as the search for a
vector x0 in a possible solution set X minimizing a target function f so that ∀x ∈U ⊆ X : f (x)≥
f (x0). For U = X , x0 is called a global optimum, otherwise it is called a local optimum of f in
X .

A heuristic optimization method tries to find the global optimum of a function which is analyt-
ically hard or infeasible to solve because, among other reasons, it is non-convex with numerous
local optima and the gradient cannot be easily computed.

Simple classical optimization methods iteratively evaluate one solution and try to improve
it until a local optimum is found. Among these, we will introduce the hill climber [1] and
simulated annealing [2] in Section 2. Many modern heuristics have been inspired by natural
analogies and iteratively search the solution “intelligently” using a natural concept. They are
usually population-based and evaluate several possible solutions in parallel during an iteration,
thus using more information and increasing the possibility of escaping local optima. Among
the most widespread natural analogies are the Darwinian evolution principle and the swarm
intelligence idea, which we want to introduce together with their most important parameter
settings1 in Sections 3 and 4.

2 Selected Non-Evolutionary Algorithms

2.1 Hill Climber

The Hill Climber (HC) produces an initial solution xt0 , then scans a small environment Ut0 of
that solution and sets xt1 to the best solution of Ut0 . By repeating this step, the current solution is
improved until a local optimum in Ut∗ is reached, much like a mountaineer cresting a hill. Both
solution quality and run-time of the algorithm greatly depend on the size of Ut . Usually, Ut must
be small to make the computation feasible, which leads to the probability of finding the global
optimum among many local optima to be rather small. Therefore, a multi-start HC is restarted
several times at different starting points to increase this probability.

2.2 Simulated Annealing

A related technique is called Simulated Annealing (SA). SA was inspired by the annealing pro-
cesses in metallurgy, where slow cooling improves the crystal structures of materials. It uses a
“temperature” parameter T to determine whether a solution is accepted as new xt+1 at a time
t + 1, even if it has a worse fitness value than xt . Specifically, for the case of maximization,
xt+1 is accepted with probability exp

( 1
T [ f (xt+1)− f (xt)]

)
if f (xt+1) < f (xt). T is decreased

with time by multiplying it with a parameter α < 1, which allows the algorithm to escape local
optima with some probability at the beginning of a run but makes it converge on a local optimum
at the end.

1Note that these strategy parameters are settings of the respective algorithm and therefore to be distinguished from
parameters to be estimated in an optimization problem.
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3 Evolutionary Algorithms

3 Evolutionary Algorithms

The Darwinian theory of evolution may be interpreted as a search algorithm working on individ-
uals defined by their genetic representations which are propagated to the next generation if they
achieve a certain fitness defined through the probability of survival, finally resulting in a new
generation of—possibly—improved individuals. This natural evolution scheme has been trans-
lated into an artificial optimization method for computational target functions usually termed an
Evolutionary Algorithm (EA). EAs consist of the following components:

Representation: Find a way to represent a possible solution (an individual) of the target func-
tion.

Initialization: Initialize a set of possible solutions (the population), randomly or using system-
atic knowledge.

Fitness evaluation: Assemble a fitness function which assigns a quality value with respect to
the target function to each possible solution.

Selection: Employ a selection scheme which, from a set of evaluated individuals, selects a
promising subset, i. e., a parent population.

Reproduction and variation: From the parent population, create a new population by combin-
ing and mutating the parent individuals.

By iterating the evaluation, selection, reproduction and variation steps, it is expected that the
individuals in the population improve over time with respect to the target function. This is be-
cause of the selection pressure towards better fitness and the property of the offspring containing
recombined parts of high quality parents, while still new elements may be introduced through
the mutation operator. EAs have been shown to work well under difficult circumstances and are
one method of choice if, for example, gradient methods cannot be applied, the target function is
noisy and highly nonlinear, and simpler hill climbers fail because of the target function having
multiple local optima. Due to the population-based character of an EA, it is able to search larger
parts of the search space in parallel. If, in addition to that, the selection scheme is probabilistic
or the mutation scheme covers a large subspace with low probability, an EA is able to overcome
local optima and find the global optimum with a reasonably high probability. There are mainly
two branches of EAs of interest here, developed independently of each other in the 1960s and
70s, and which are described in the following subsections.

3.1 Genetic Algorithm

Genetic Algorithms (GA) became popular through the work of Holland (1975, [3]). His prime
idea was to simulate genetic processes in a computer, and in analogy to the four base pairs in
organic DNA, he used the discrete counterpart in computation, i. e., binary strings containing
zeros and ones, to represent individuals. In order to solve continuous functions, the binary
genotype in GA often has to be translated to a continuous phenotype which can be evaluated.
The selection scheme is usually implemented in a probabilistic way, giving an individual I of
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3.2 Evolution Strategy

population P a chance of survival which is proportional to its relative fitness frel(I) (stated for
maximization):

frel(I) =
f (I)

∑J∈P f (J)
.

Reproduction is done by just copying the parents to a new population of the same size, while
recombination works by cutting two randomly chosen parents in n ≥ 2 pieces and exchanging
analogous sub-parts to form children (crossover). During mutation, each bit of an individual
genotype is then flipped with a certain small probability pm, e. g., pm = 0.001 (Figure 1). The
probability of crossover pc is often set to a value close to 1.

Figure 1: Illustration of crossover and mutation on a binary genotype.

Parameters, which control how the EA works, such as the population size or variation proba-
bilities pc and pm are also called strategy parameters of the EA, as opposed to problem parame-
ters making up each single solution representation.

3.2 Evolution Strategy

The second type of EA uses a real-valued genotype and was termed Evolution Strategy (ES) by
Rechenberg in 1973 [4]. Other than in a GA, the typical ES selection scheme works determin-
istically, selecting the best µ of the population and copying them to the new population of size
λ > µ . The offspring are then mutated by adding a small random Gaussian noise δ ∼N (0,σ),
where σ is called the mutation step size. Mutation is done with a rather high probability close to
1, while recombination is typically applied with low probability. After the fitness evaluation, the
next generation can be selected from the λ children only, or it may also take the µ last parents
into account. The first variant is called (µ,λ )-selection, the second (µ +λ )-selection. While the
(µ,λ )-scheme may not retain high quality solutions of the parent set, the (µ + λ )-scheme has
the property that the best individual can never be lost during optimization, because it is always
taken into account by the deterministic selection. This can be advantageous, e. g., for a conver-
gence proof, but on the other hand, it may cause the ES to get stuck in local optima, because it
is harder to cross “valleys” between optima if an attractor cannot be forgotten.

A possibility developed early in ES is the idea of self-adaption: Strategy parameters can be
added to the genotype and be optimized in parallel to the actual problem parameters. This has
been proven to be useful especially for the mutation step-size σ , giving each individual the
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3 Evolutionary Algorithms

Figure 2: Illustration of ES mutation operators with globally, locally and CMA controlled step
sizes.

possibility of finding a preferred step-size for its area of the solution space. Extending the idea,
a step-size vector containing σi, i ∈ {1, . . . ,n} parameters may be introduced into each problem
dimension n, allowing the mutation to additionally choose preferred axes of mutation parallel
to the coordinate system (local mutation). A generalization of this is the so-called Covariance
Matrix Adaptation (CMA) [5], where an n×n matrix is added to the individual genotype coding
the covariance of the random mutation vector δ . This allows the individuals to discover arbitrary
directions in which mutation is especially promising. The CMA-ES variant is widely regarded
as most sophisticated and able to solve even hard optimization tasks relatively effectively, as
long as n remains rather small, e. g., n < 100, because of the quadratic space requirements of the
adaptation matrix.

3.3 Differential Evolution

Besides GA and ES, and often inspired by them, several other evolutionary methods have been
developed and found to be more or less promising. One of the more successful and interesting
approaches of the last several years is called Differential Evolution (DE), presented by Storn
1996 [6]. DE works on real-valued genotypes and defines a variation operator, or rather a class
of variation operators, based on selecting parent individuals xr1, xr2 and xr3 from the population
and calculating a difference vector v = xC + F(xA − xB). For each individual x, a new trial
individual u is created by selecting the parents and recombining x with v in a crossover step.
The amplification parameter F ∈ [0,2] and the crossover probability CR are strategy parameters.
CR is not equivalent to pc from GA, because CR is interpreted component-wise, meaning that
the higher the CR, the more components are taken from v to form u. The trial individual u is
then evaluated and replaces x only if its fitness is higher than that of x. In this way, similar to a
(µ +λ )-ES, DE is unable to “forget” good solutions. Still, because the difference operator is able
to create diverse individuals, DE has quite good exploration capabilities. Several suggestions
have been made about how to select the parents (at random or by quality) and on the number
of difference vectors (usually one or two). Often, DE schemes using a second difference vector
towards the best individual for offspring creation (with amplification λ ) are superior to random
parent selection alone. Typical parameter settings are λ = F = 0.8 and CR = 0.5.
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4 Swarm Intelligence Algorithms

4.1 Particle Swarm Optimization

Another class of naturally inspired heuristics uses ideas of swarm intelligence. When looking
at swarms of fish or birds, for example, one often observes flocking behavior: When deciding
on how to move, each individual takes into account not only its own state but the movements
of neighboring individuals, so that the collective moves in a seemingly organized way, although
there is usually no designated leader of the group. This concept of simple, local interaction
producing self-organized behavior has been found to be an interesting approach in artificial in-
telligence. The corresponding search heuristic is called Particle Swarm Optimization (PSO) and
was introduced by Kennedy and Eberhart in 1995 [7]. Similar to EAs, PSO proposes a popula-
tion of possible solutions which is to be improved iteratively. As opposed to EAs, however, it
does not apply evolutionary concepts such as selection, reproduction or crossover. Instead, each
individual (or particle) x is thought of as “flying” across the solution space with its own travel
velocity v. Also, each particle is assigned to a set of neighboring individuals N(x) defining an
overlay topology. During an iteration, the particle updates its velocity using two sources of infor-
mation. The first one is called the “cognitive component” and draws the particle towards the best
position it has itself seen so far on its “voyage”. The second one is called “social component”
and draws the particle towards the best position which has been found by all of its neighbors.
The update formula is implemented componentwise for a vectorial individual x using random
variables r1,r2 ∼U(0,1) in Equations (1 and 2)

vi(t +1) = χ[vt + r1φ1(x
p
i − xi)+ r2φ2(xn

i − xi)] (1)

xi(t +1) = xi(t)+ vi(t +1) (2)

The random factors r1 and r2 allow stochastic exploration. The strategy parameters φ1 and
φ2 weigh the historic versus the neighbor-dependent attraction, while the constriction factor χ

is smaller than one and can be chosen such that the swarm slowly converges if φ1 +φ2 & 4 [8].
Standard settings are φ1 = φ2 = 2.05 and χ = 0.73. As opposed to other EAs, the PSO method
is applied with rather small population sizes and shows good exploration abilities. On the other
hand, its convergence is often observed to be slower than that of self-adaptive ESs, for example.

4.2 Tribes: a Parameter-free PSO

Whenever there are strategy parameters for a heuristic that influence its behavior, there arises
the question of how to set them for a specific case. For most parameters there exist rules of
thumb found empirically by systematically testing different settings on collections of benchmark
problems. For very specific problems, these settings may not be optimal and it is interesting to
find which ones work better and why, to improve optimization performance on the one hand or
to improve the optimization method itself on the other.

Still, it is often desirable to just use an out-of-the-box heuristic, employ default parameters
without any “meta-optimization” or have them handled by self-adaptive mechanisms. Espe-
cially, users beyond the field of computer science, like technicians or biologists, might look for
a method without lots of parameters, which can hardly be chosen without knowing details of the
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underlying method. This fact was considered by M. Clerc when introducing a PSO variant with-
out any parameters, which he calls Tribes [9]. He combines several mechanisms for choosing a
swarm size, swarm topology, initialization and update scheme and argues that, without knowing
the optimal setting, it is favorable to mix them randomly and enforce successful ones, similar
to self-adaptive parameters in ES but in a more general way. Being interested in how well this
works for a biological optimization problem, we added Tribes to the list of candidate optimizers.
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