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1 Introduction to Mathematical Modeling of Biochemical Systems

The topology, of a reaction network can be described with a stoichiometric matrix N. Each
column in this matrix represents one reaction and each row is assigned to one metabolite, i. e.,
one reacting species. Negative entries in this matrix imply that a species is consumed whereas
positive matrix elements stand for the creation of a species in the associated reaction. To compute
the rates of change over time for each species in the system a second quality is required: the
velocity of each reaction, i. e., the amount of molecules which are consumed or created per
unit time in each reaction. The vector of reaction velocities depends on the vector of reacting
species S, the parameter vector p and may also depend explicitly on time t. If both the structural
dependency N and the reaction velocities are known, the rates of change of each metabolite’s
concentration over time can be calculated by linear combination of the stoichiometric matrix N
with the vector of reaction velocities v:

d
dt

S = Nv(S(t), t,p). (1)

In many cases, the stoichiometric matrix of the system is known or can be obtained from on-line
databases like KEGG [1, 2] or METACYC [3]. Reliable rate laws for the reactions contained
within the network are, however, often unknown because these must actually be derived for each
singular reaction by measurements and laborious experiments [4]. Therefore, approximative
rate laws are often applied, which are either continuous or discrete and either deterministic or
stochastic [5]. Several examples of each group exist such as probabilistic, e. g., the classical
Gillespie or the modern Langevin approach [6, 7], phenomenological approaches like power
law approximations [8, 9, 10], linlog [11] or loglin [12] kinetics or semi-mechanistic approaches
like the generalized mass action rate law [10, 13] or a recent generalization of the Michaelis-
Menten equation, the convenience rate law [13]. A different choice of specific rate laws v leads
to alternative model systems and also to a different parameter vector p.

In the remainder of this section we discuss the properties of four often used rate laws. The
next section shows the resulting differential equation systems when these equations are applied
to the specific system under consideration, the valine and leucine biosynthesis in C. glutamicum.

1.1 Generalized Mass Action Rate Law

The mass action rate law is the simplest one because it only contains two parameters: one for the
forward and one for the reverse reaction. If the equilibrium constant of the reaction is known,
this rate law can be even further simplified. To reduce the model’s complexity, it may in some
cases be desirable to neglect the effects of an enzyme catalysis. The mechanism can be described
by a mass action rate law instead, in which the effects of the participating enzymes are hidden
in the rate constants. However, if any kind of inhibition is involved in the reaction, this has to be
included in the kinetic equation. Here we apply an inhibition function that fits in the generalized
mass action rate law as proposed by Schauer and Heinrich in 1983 [10, 14]:

v j(S,p) = Fj(S,p)

(
k+ j ∏

i
S

n−i j
i − k− j ∏

i
S

n+
i j

i

)
. (2)
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1 Introduction to Mathematical Modeling of Biochemical Systems

The function Fj(S,p) has been defined as any positive function of the substrate concentrations
S and the parameter vector p to introduce saturation or inhibition effects to the common mass
action kinetics, written in brackets [10]. For convenience of notation, the matrices N±, whose
elements n±i j express the absolute values of the positive or negative stoichiometric coefficients,
respectively, were introduced. All other kinetic equations presented in this section constitute
special cases of this generalized form of the mass action rate law.

Feedback inhibition loops can be included with an appropriate choice of function Fj. Here we
propose to adopt one of the following approaches with KI

j > 0:

Fj(S,p) =
1

1+KI
j · [I]

(3)

Fj(S,p) = exp(−KI
j · [I]). (4)

Equation (3) can be derived as follows: An inhibitor lowers the concentration of free enzymes.
Let ηE : R×R+ → R+∪{0} be a function describing the efficiency factor of enzyme E for any
reaction system

S1 +S2
E−⇀↽− P (5)

E+ I
spontaneous−−−−−−−⇀↽−−−−−−− EI, (6)

where S1 and S2 form some product P inhibited by I.
In fact, instead of a bi-molecular reaction, we have a tri-molecular reaction due to the enzyme

being involved. The mass action rate law for this reaction reads:

v = k+[S1][S2][E]− k−[P][E]. (7)

Assume the efficiency of enzyme E to be reduced by inhibitor I. The enzyme can either
react with the two substrates or with the inhibitor molecule. Thus, the inhibitor reduces the
concentration of the free enzyme [E0]:

ηE =
[E0]− [EI]

[E0]
. (8)

E0, EI and E follow a conservation law: [E0] = [E]+[EI], where [E] is the enzyme concentration
that is currently available to catalyze the reaction (5). We neglect the intermediary enzyme-
substrate complex to simplify the notation. The equilibrium constant of reaction (6) is defined
as

KI =
[EI]

[E] · [I]
. (9)

Inserting Equation (9) into (8) and performing some conversion yields

ηE =
1

1+KI · [I]
. (10)
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1.2 Michaelis-Menten Equation

For any inhibition reaction two conditions must be guaranteed:

ηE(t,0) = 1 (11)

lim
[I]→∞

ηE(t, [I]) = 0. (12)

It can be shown easily that this function ηE evinces the desired properties needed to be a valid
description of an inhibition reaction:

ηE(t,0) =
1

1+KI ·0
=1 if [I] = 0

ηE(t, [I]) =
1

1+0 · [I]
=1 if KI = 0

lim
[I]→∞

ηE(t, [I]) = lim
[I]→∞

1
1+KI · [I]

=0 if KI 6= 0.

For KI = 0 the inhibitor does not have any effect. Setting Fj(S,p) = ηE and inserting it into
Equation (2) yields the desired model.

The function ηE has been derived for bi-molecular reactions but can be scaled and applied to
any number of inhibitors and reacting species as well. The general equation reads:

Fj(S,p) = ∏
m

ηEm(t,Sm(t))w−
jm . (13)

The elements of matrix W− express the connectivity of modulators and reactions within the
network in accordance with convenience kinetics.

Equation (4) has been derived intuitively, driven by the assumption that the exponent function
constitutes an important growth and shrinkage function in biology. It is important to note that
Equation (4) also satisfies both conditions of a valid inhibition function (Equations 11 and 12).

1.2 Michaelis-Menten Equation

The Michaelis-Menten equation can be applied to reactions in which one enzyme catalyzes the
conversion of one substrate molecule into certain products, and it is sometimes called Henri-
Michaelis-Menten equation [15, p. 30]. The general mechanism of this reaction is shown in
Figure 1. Equation (14) gives the general equation as a special case of the generalized mass
action kinetics for bi-molecular enzyme reactions of S and E forming product P and the catalyst
E inhibited by I.

v j =

vm
+

KM
S

[S]− vm
−

KM
P

[P]

1+ [I]
KIa +

(
[S]
KM

S
+ [P]

KM
P

)(
1+ [I]

KIb

) (14)

Three limits upon the inhibition constants KIa|b are often of particular interest [10]:

• competitive (for 0 < KIa < ∞, KIb → ∞)

• noncompetitive (for 0 < KIa = KIb < ∞) and
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1 Introduction to Mathematical Modeling of Biochemical Systems

E+S1
k1−−⇀↽−−
k−1

ES1
k2−−⇀↽−−
k−2

E+P1

−−
⇀

↽
−− K

Ia
I+

−−
⇀

↽
−− K

Ib
I+

EI ES1I

Figure 1: General Michaelis-Menten mechanism including inhibition

• uncompetitive inhibition (for KIa → ∞, 0 < KIb < ∞).

If the exact mechanism or the state at which the inhibitor binds to the enzyme is known, these
constants may vanish. One purpose of this study is, however, to let an optimization procedure
“decide”, which kind of inhibition is the most appropriate one given in vivo measurements.

1.3 Convenience Rate Law and Thermodynamics

Recently, the convenience rate law was suggested by Liebermeister et al. [13] as a standard
equation for any enzyme reaction where the exact mechanism is unknown or as an approximation
of the real kinetics. The equation is derived from the random order ternary-complex reaction
mechanism. It was shown that this rate law is able to describe the velocity of any reaction
mechanism in a reasonable way [13] and hence constitutes a semi-mechanistic equation. The
general equation of the convenience kinetics for reaction j reads:

v j = [E j]∏
m

hA(Sm,KA
jm)w+

jmhI(Sm,KI
jm)w−

jm ·
kcat
+ j ∏i

(
Si

KM
ji

)n−i j

− kcat
− j ∏i

(
Si

KM
ji

)n+
i j

∏i ∑
n−i j
m=0

(
Si

KM
ji

)m

+∏i ∑
n+

i j
m=0

(
Si

KM
ji

)m

−1
(15)

with hA and hI being functions for activation and inhibition, respectively, kcat
± j the turnover rates

and KM
ji being a constant analogous to the Michaelis constant KM [13]. The modulation matrices

W± are defined in a similar way as the stoichiometric matrix and contain positive entries for
the connectivity of the inhibitor or activator metabolites. Function hA can be modeled in two
alternative ways:

hA([Sm],kA
jm) =

[Sm]
kA

jm +[Sm]
(16)

hA([Sm],kA
jm) =1+

[Sm]
kA

jm
, (17)

and for inhibition

hI(Si,KI) =
KI

KI +Si
=

1
1+ Si

KI

=
1

1+KI′Si
= ηE (18)
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1.4 Stochastic Langevin Equation

was suggested [13]. This approach equals our inhibition in Equation (3) apart from the reciprocal
constant. Equation (15) is also a special case of the generalized mass action kinetics and can
be applied to any enzyme-catalyzed reaction. However, if the stoichiometric matrix N of the
reaction system contains linearly dependent columns, i. e., N does not have full column rank,
then at least one reaction is thermodynamically dependent on another. In this case, choosing
the parameters of the equation while ignoring this dependency may fit given measurement data
well but will violate the thermodynamic constraints of the system. Hence, Liebermeister et al.
derived a second form of convenience kinetics:

v j(S,p) = [E j]∏
m

hA(Sm,KA
jm)w+

jmhI(Sm,KI
jm)w−

jm

· kV
j · [E j] ·

∏i

(
[Si]
KM

ji

)n−i j (
kG

i kM
ji

)− ni j
2 −∏i

(
[Si]
KM

ji

)n+
i j (

kG
i kM

ji

) ni j
2

∏i ∑
n−i j
m=0

(
[Si]
KM

ji

)m

+∏i ∑
n+

i j
m=0

(
[Si]
KM

ji

)m

−1
. (19)

In this equation, the parameters kcat
± j are replaced by ∏i

(
kG

i kM
ji

)∓ ni j
2

and the whole fraction is

multiplied by the additional parameter kV
j . This ensures that all newly introduced parameters

are thermodynamically independent. Note that every kG
i stands for molecule i regardless of

the respective reaction, whereas every kV
j is a parameter for reaction j and does not depend on

any molecule. The Michaelis-analog parameter kM
ji depends on both reaction j and molecule

i and thus links both parameters together. For a complete derivation see the original paper of
Liebermeister et al. [13].

1.4 Stochastic Langevin Equation

The use of ordinary differential equations to describe systems of chemical reactions implies that
the underlying process is both continuous and deterministic. When taking the physical basis
of chemical reactions into account, it is revealed that the evolution over time of a chemically
reacting system is actually not a continuous process, because molecular population levels can
only change by integral amounts. However, it is not a deterministic process, either. From the
perspective of classical statistical mechanics, the precise knowledge of all particle positions and
velocities is required to predict the temporal behavior of the system, which is, in principle,
impossible to observe [7]. In many cases, of course, the application of the ordinary differential
equation approach to chemical kinetics is justified, especially if the number of molecules per
species is very large. In some cases, however, the inability of the deterministic approach to
describe fluctuations in the molecular population levels can induce misleading results, especially
if molecular concentrations are very low or the system operates close to a point of instability.

In the stochastic equation, the concentration variables Si are replaced by the random variables
Xi(t)≡ number of Si molecules in the system at time t, i = 1, . . . ,N. These numbers are defined
relative to an enclosed reaction volume V . These N species interact through M specified reaction
channels R j, j = 1, . . . ,M. Each reaction is characterized by a stochastic rate constant c j, which
describes for an infinitesimal time interval dt the probability that a particular combination of R j
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1 Introduction to Mathematical Modeling of Biochemical Systems

molecules will react accordingly in the next time interval dt [7]. This constant depends only on
the physical properties of the reacting molecules.

The physically justified stochastic description of a system of chemically reacting species is
given by the chemical master equation [16]:

∂

∂ t
P(X1, . . . ,XN ; t) =

M

∑
j=1

B j −a jP(X1, . . . ,XN ; t). (20)

This equation describes the temporal change of the grand probability function P(X1, . . . ,XN ; t)≡
probability that there will be X1 molecules of species S1, . . . , and XN molecules of species SN

in V at time t. Here the propensity a j is defined as: a jdt = c jh jdt ≡ probability that an R j

reaction will occur in V in (t, t + dt), given that the system is in state (X1, . . . ,XN) at time t.
The function h j gives the number of distinct R j molecular reactant combinations available in the
state (X1, . . . ,XN), j = 1, . . . ,M. The quantity B jdt is the probability that the system will undergo
reaction R j in the time interval (t, t +dt) to arrive at state (X1, . . . ,XN).

For simulation studies, the master equation itself is of limited use, since even its numerical
solution is difficult. Analytical solutions exist only for very few problems. Several strategies
for the simulation of the underlying Markov process have been proposed [17]. In the case of
large systems with high metabolite concentrations, these simulation strategies are highly com-
putationally intensive and therefore unsuited for large-scale parameter optimization. However,
for macroscopic systems it is possible to approximate the evolution in time of the stochastic state
variables directly using the chemical Langevin equation [6, 7]:

dXi(t)
dt

=
M

∑
j=1

ni ja j(X(t))+
M

∑
j=1

√
a j(X(t))Γ j(t), i = 1, . . . ,N. (21)

Here ni j represents the stoichiometric coefficient of the ith metabolite in the jth reaction and
Γ j(t) is temporally uncorrelated, statistically independent Gaussian white noise. In order for
this approximation to hold, two requirements must be fulfilled:

1. There must exist a domain of macroscopically infinitesimal time intervals such that during
any time interval dt all propensity functions remain approximately constant.

2. Each reaction channel is required to fire many more times than once. Large molecular
populations will normally be an acceptable condition for the assumption to hold [6].

For easier numerical treatment, Equation (21) can be rewritten using the Wiener process [18]:

dxi(t) =
M

∑
j=1

ni ja j(x(t))+
M

∑
j=1

ni j

√
a j(x(t))dWj, i = 1, . . . ,N. (22)

Here the discrete variables (X1, . . . ,XN) are replaced by the continuous molecule concentra-
tions (x1, . . . ,xN), since in the case of sufficiently high molecule concentrations both descriptions
are considered equivalent. In order to numerically integrate the Langevin equation with standard

10



ordinary differential equation solvers, the equation can be split into a stochastic and a determin-
istic term. The deterministic term and the deterministic part of the stochastic term can be treated
like ordinary differential equations as suggested by Bentele et al. [19]:

∆x̂i(t) =
M

∑
j=1

ni ja j(xt)∆t (23)

∆x̃i(t) =
M

∑
j=1

ni j

√
a j(x(t))∆t. (24)

The latter term is then multiplied by a normal random variable ni = N in analogy with the finite
Wiener increments used in the Euler-Maruyama method [18].

After each time-step, both terms are added to give the full state variable change:

∆xi(t) = ∆x̂i(t)+∆x̃i(t) ·ni (25)

Using this relaxed Wiener process, knowledge of the step size ∆t is not necessary ahead of time,
thereby allowing adaptive step size control of a solver for ordinary differential equations.

2 Application to the Valine and Leucine Biosynthesis in
C. glutamicum

Figure 2 depicts the valine and leucine biosynthesis in Corynebacterium glutamicum according
to the METACYC [3] and KEGG [1, 2] databases. Table 1 gives an overview of all reactions
within this network. Our consideration of the pathway starts with pyruvate (Pyr), which is
subsequently consumed to form 2-ketoisovalerate (KIV) in three reaction steps. At this point the
system contains a bifurcation: There are two different ways to form valine and one to convert
KIV to 2-isopropylmalate (2IPM). The latter is the starting substance for leucine production
in four following reaction steps. Both valine and leucine can be used for biomass production
or can be transported out of the cell if not needed. Here we only consider the industrially
interesting transport because it cannot be distinguished in the two processes. In four feedback
loops valine and leucine downregulate their own production rate. The transport of leucine and
valine across the cell wall is actually performed by the same enzyme, so both substrates compete
with each other. However, for modeling purposes two distinct reactions are necessary in which
the competition is included as inhibition.

Some reactions are lumped together (Table 1) as suggested by Magnus et al. [20]. Since
the reaction 2 IPM −−⇀↽−− 3 IPM is fast, it is assumed to be in equilibrium. This and the two
following reactions 3 IPM + NAD+ −−→ 2 I3OS + NADH2 as well as (2S)-2-isopropyl-3-oxo-
succinate (2 I3OS) −−→ 2-ketoisocaproate (KIC) +CO2, which only depend on the concentra-
tion of 2 IPM, are lumped together introducing the symbol IPM for both derivatives. [20]. The
KEGG database [2, 1] mentions two additional reaction steps not included in METACYC [3]: Pyr
turns first into 2-hydroxyethyl-thio-dipyrophosphate before forming (S)-2-acetolactate (AcLac)
which then turns into 3-hydroxy-3-methyl-2-oxobutanoate before it forms (R)-2,3-dihydroxy-3-
metylbutanoate (DHIV).
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2 Application to the Valine and Leucine Biosynthesis in C. glutamicum

Gluc

Pyr

AcLac

DHIV

KIV

Val

ValExt

2IPM 3IPM 2I3OS KIC

Leu

LeuExt

NADPH

NADP+

H+

H O2

Ala

Pyr

Glut

αKG

AcCoA CoA NAD+ NADH
H+

CO2

Figure 2: Process diagram of the valine and leucine synthesis in C. glutamicum
Note that enzyme molecules are not included in this process diagram for the sake of a clear arrangement
of the participating species.

No
¯ Reaction Enzyme Inhibitor

R1 2 Pyr −−→ AcLac+CO2 AHAS Val
R2 AcLac+NADPH2 −−⇀↽−− DHIV+NADP+ AHAIR Val
R3 DHIV −−→ KIV+H2O DHAD Val
R4 KIV+Glut −−→ Val+αKG BCAATValB
R5 KIV+Ala −−→ Val+Pyr BCAATValC
R6 Val −−→ Valext TransVal Leu
R7 KIV+AcCoA −−→ IPM+CoA IPMS Leu
R8 IPM+NAD+ −−→ KIC+NADH2 +CO2 IPMDH
R9 KIC+Glut −−⇀↽−− Leu+αKG BCAATLeuB
R10 Leu −−→ Leuext TransLeu Val

Table 1: The reaction system in more detail
This table gives an overview of all reactions in the system.
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2.1 Modeling External Metabolites Using Approximation Splines

When applying Equation 1 to the reactions listed in Table 1 the resulting seven-dimensional
differential equation system reads:

d
dt

[AcLac] = v1− v2 (26)

d
dt

[DHIV] = v2− v3 (27)

d
dt

[KIV] = v3− v4− v5− v7 (28)

d
dt

[IPM] = v7− v8 (29)

d
dt

[Val] = v4 + v5− v6 (30)

d
dt

[KIC] = v8− v9 (31)

d
dt

[Leu] = v9− v10. (32)

The remainder of this section explains how external metabolites could be included in this
equation system and then presents seven alternative formulations for the reaction velocities based
on the four approaches that were introduced in the last section. The seven-dimensional differen-
tial equation system shown above does not vary with alternative choices of approximative rate
laws.

2.1 Modeling External Metabolites Using Approximation Splines

Six metabolites are consumed or formed in this network but take part in several reactions not con-
sidered here. These are called “external” metabolites because the temporal changes of their con-
centration cannot be computed in terms of this network. These six metabolites, α-ketoglutarate
(αKG), alanine (Ala), glutamate (Glut), pyruvate (Pyr), NADP+ and NAD+ are therefore in-
cluded using splines. Instead of using exact splines that connect all measurements, we use cubic
approximation splines. This kind of spline is defined by an at-least-twice differentiable cubic
polynomial with four coefficients between each pair of two measurements. For the given mea-
surements (tn,xtni), for all metabolites i, n = 1, . . . ,N the spline coefficients are chosen as the
solution of the minimization problem

min
fi∈C2(t1,tN)

∫ tN

t1
( f ′′i (t))2dt (33)

satisfying the constraint
N

∑
i=1

(
f (ti)− xti

ωi

)2

6 λ (34)

where N is the total number of time points, ω is a vector of weights and the parameter λ specifies
the degree of smoothness. To weight all measurements equally, all ωi are set to 1. Due to
the different ranges of the concentrations of the six metabolites, it is not possible to find one
appropriate degree of smoothness λ that leads to equally smooth curves. Hence, we transform all
concentrations into the range [0,1], set λ = 1, compute the spline coefficients and re-transform
them back into the original range of the specific metabolite. The result is shown in Figure 3.
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2 Application to the Valine and Leucine Biosynthesis in C. glutamicum
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(a) αα−Ketoglutarate (ααKG)
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(b) Alanine (Ala)
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(c) Glutamate (Glut)
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(d) Pyruvate (Pyr)
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(e) NADP++
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Figure 3: Representing external metabolites using approximation splines
Six of the 13 measured metabolites are considered external because these metabolites are an input for the
model but occur in many other reactions which are not part of this network. To include their dynamic
behavior into the model, they are approximated with cubic splines. Splines smooth the fluctuating mea-
surements but do not depend on any biologically relevant model since their coefficients are computed
individually for each chemical species.

2.2 Generalized Mass Action Rate Law

2.2.1 Reversible Reactions (GMAKr)

Applying Equation (2), combined with Equation (3), to reaction system R1 through R10 (Table 1)
leads to an ordinary differential equation system with 24 parameters k± j, KI

j:

v1 =
k+1[Pyr]2− k−1[AcLac]

1+KI
1[Val]

(35)

v2 =
k+2[AcLac][NADPH2]

1+KI
2[Val]

− k−2[DHIV][NADP+]
1+KI

2[Val]
(36)

v3 =
k+3[DHIV]− k−3[KIV]

1+KI
3[Val]

(37)

v4 = k+4[KIV][Glut]− k−4[Val][αKG] (38)

v5 = k+5[KIV][Ala]− k−5[Val][Pyr] (39)
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2.3 Michaelis-Menten Equations

v6 =
k+6[Val]

1+KI
4[Leu]

(40)

v7 =
k+7[KIV][AcCoA]− k−7[IPM][CoA]

1+KI
5[Leu]

(41)

v8 = k+8[IPM][NAD+]− k−8[KIC][NADH2] (42)

v9 = k+9[KIC][Glut]− k−9[Leu][αKG] (43)

v10 =
k+10[Leu]

1+KI
6[Val]

(44)

2.2.2 Irreversible Reactions with exp Inhibition (GMAKi)

By setting all product concentrations, apart from R2 and R9, to zero and applying Equation (4)
to Equation (2), we obtain the irreversible version of this equation system with 18 parameters
k± j, KI

j:

v1 = k+1[Pyr]2 exp(−KI
1[Val]) (45)

v2 = exp(−KI
2[Val]) ·

(
k+2[AcLac][NADPH2]− k−2[DHIV][NADP+]

)
(46)

v3 = k+3[DHIV]exp(−KI
3[Val]) (47)

v4 = k+4[Glut][KIV] (48)

v5 = k+5[Ala][KIV] (49)

v6 = k+6[Val]exp(−KI
4[Leu]) (50)

v7 = k+7[KIV]exp(−KI
5[Leu]) (51)

v8 = k+8[NAD+][IPM] (52)

v9 = k+9[Glut][KIC]− k−9[αKG][Leu] (53)

v10 = k+10[Leu]exp(−KI
6[Val].) (54)

2.3 Michaelis-Menten Equations

Three reactions of the system (R3, R6 and R10, Table 1) follow a bi-molecular Michaelis-Menten
reaction mechanism. In the case of R3 there might be a reverse reaction. Both of the remaining
reactions are assumed to be irreversible because they describe the transport of valine and leucine
out of the cell. Since we model the production of both metabolic products, there is no reason to
have an uptake mechanism for these substances. We further assume that both vm

+6 and vm
+10 are

allowed to be zero so there is no need to export valine or leucine if it is necessary for biomass
formation. The other reactions in the equation system (35) through (57) are modeled using the
GMAKr approach including inhibition mechanism (3) derived in Section 2.2.1. The complete
GMMr model contains 31 parameters to be estimated. To avoid numerical problems, the inhibi-
tion constants in Michaelis-Menten kinetics are transformed into their reciprocals KIa|b′ = 1

KIa|b .
This modification allows us to model any kind of inhibition. Three particularly important spe-
cial cases were described in Section 2.3.1. For instance, by setting KIa|b′ = 0 we obtain the same
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2 Application to the Valine and Leucine Biosynthesis in C. glutamicum

effect as if KIa|b → ∞ and avoid numerical problems. For the sake of simplicity we omit the
prime symbol in the following equations.

2.3.1 Reversible Michaelis-Menten Model (GMMr)

Replacing v3, v6 and v10 in the GMAKr model with the following three equations yields the
GMMr model:

v3 =

vm
+3

KM
[DHIV]

[DHIV]− vm
−3

KM
[KIV]

[KIV]

1+KIa
1 [Val]+

(
[DHIV]
KM

[DHIV]
+ [KIV]

KM
[KIV]

)(
1+KIb

1 [Val]
) (55)

v6 =
vm
+6[Val]

KM
[Val] +[Val]+

(
KM

[Val]K
Ia
2 +KIb

2 [Val]
)

[Leu]
(56)

v10 =
vm
+10[Leu]

KM
[Leu] +[Leu]+

(
KM

[Leu]K
Ia
3 +KIb

3 [Leu]
)

[Val]
. (57)

2.3.2 Irreversible Michaelis-Menten Model (GMMi)

An irreversible alternative of the GMMr model can be established by setting all product concen-
trations to zero. The resulting system contains 24 parameters KIa|b

j , k± j, KM
i j :

v1 =
k+1[Pyr]2

1+KI
1[Val]

(58)

v2 =
k+2[AcLac][NADPH2]

1+KI
2[Val]

− k−2[DHIV][NADP+]
1+KI

2[Val]
(59)

v3 =

vm
+3

KM
[DHIV]

[DHIV]

1+KIa
1 [Val]+ [DHIV]

KM
[DHIV]

(
1+KIb

1 [Val]
) (60)

v4 = k+4[KIV][Glut] (61)

v5 = k+5[KIV][Ala] (62)

v6 =
vm
+6[Val]

KM
[Val] +[Val]+

(
KM

[Val]K
Ia
2 +KIb

2 [Val]
)

[Leu]
(63)

v7 =
k+7[KIV][AcCoA]

1+KI
5[Leu]

(64)

v8 = k+8[IPM][NAD+] (65)

v9 = k+9[KIC][Glut]− k−9[Leu][αKG] (66)

v10 =
vm
+10[Leu]

KM
[Leu] +[Leu]+

(
KM

[Leu]K
Ia
3 +KIb

3 [Leu]
)

[Val]
. (67)
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2.4 Convenience Kinetics Model

2.4 Convenience Kinetics Model

Inhibition plays an important role in the valine and leucine biosynthesis of C. glutamicum.
Therefore, Equation (18) is applied to include those effects.

2.4.1 Reversible Convenience Kinetics (CKMMr)

The stoichiometric matrix has full column rank. Hence, the parameters kcat
± j can be estimated

directly without violating thermodynamic constraints [13]. Therefore, the simple form of the
convenience rate law, which contains a smaller number of parameters, is applied in this study.
Applying Equation (15) to reaction system R1 through R10 yields the equation system (68)-(74).
The three reactions that follow the traditional bi-molecular Michaelis-Menten mechanism are
modeled using Equation (14) and can be found in Section 2.3.1. The reactions R6 and R10 are
considered irreversible as described before. The product [E j]kcat

± j is lumped into one parameter
V m
± j for all j assuming all enzyme concentrations to remain constant during the 25 s. No enzyme

concentrations have been measured, so an optimizer cannot distinguish between the product of
two parameters and that of one parameter, due to the infinite number of combinations leading to
the same product. The whole system contains 59 parameters.

v1 =

kcat
+1·[AHAS]·KI

1(
KM

[Pyr]1

)2 [Pyr]2− kcat
−1·[AHAS]·KI

1
KM

[AcLac]1
[AcLac](

1+ [Pyr]
KM

[Pyr]1
+
(

[Pyr]
KM

[Pyr]1

)2

+ [AcLac]
KM

[AcLac]1

)(
KI

1 +[Val]
) (68)

v2 =

kcat
+2·[AHAIR]·KI

2
KM

[AcLac]2·K
M
[NADPH2]1

[AcLac][NADPH2]−
kcat
−2·[AHAIR]·KI

2
KM

[DHIV]1·K
M
[NADP+]1

[DHIV][NADP+](
1+ [AcLac]

KM
[AcLac]2

)(
1+ [NADPH2]

KM
[NADPH2]1

)
+
(

1+ [DHIV]
KM

[DHIV]1

)(
1+ [NADP+]

KM
[NADP+]1

)
−1

· 1
KI

2 +[Val]
(69)

v4 =

kcat
+4·[BCAATValB]
KM

[KIV]1·K
M
[Glut]1

[KIV][Glut]− kcat
−4·[BCAATValB]
KM

[Val]1·K
M
[αKG]1

[Val][αKG]

1+ [KIV]
KM

[KIV]1
+ [Glut]

KM
[Glut]1

+ [KIV][Glut]
KM

[KIV]1·K
M
[Glut]1

+ [Val]
KM

[Val]1
+ [αKG]

KM
[αKG]1

+ [Val][αKG]
KM

[Val]1·K
M
[αKG]1

(70)

v5 =

kcat
+5·[BCAATValC]
KM

[KIV]2·K
M
[Ala]1

[KIV][Ala]− kcat
−5·[BCAATValC]
KM

[Val]2·K
M
[Pyr]2

[Val][Pyr]

1+ [KIV]
KM

[KIV]2
+ [Ala]

KM
[Ala]1

+ [KIV][Ala]
KM

[KIV]2·K
M
[Ala]1

+ [Val]
KM

[Val]2
+ [Pyr]

KM
[Pyr]2

+ [Val][Pyr]
KM

[Val]2·K
M
[Pyr]2

(71)

v7 =

kcat
+7·[IPMS]·KI

3
KM

[KIV]3·K
M
[AcCoA]1

[KIV][AcCoA]− kcat
−7·[IPMS]·KI

3
KM

[IPM]1·K
M
[CoA]1

[IPM][CoA]

1+ [KIV]
KM

[KIV]3
+ [AcCoA]

KM
[AcCoA]1

+ [KIV][AcCoA]
KM

[KIV]3·K
M
[AcCoA]1

+ [IPM]
KM

[IPM]1
+ [CoA]

KM
[CoA]1

+ [IPM][CoA]
KM

[IPM]1KM
[CoA]1

· 1(
KI

3 +[Leu]
) (72)
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2 Application to the Valine and Leucine Biosynthesis in C. glutamicum

v8 =

kcat
+8·[IPMDH]

KM
[IPM]2·K

M
[NAD+]1

[IPM][NAD+]− kcat
−8·[IPMDH]

KM
[KIC]1·K

M
[NADH2]1

[KIC][NADH2]

1+ [IPM]
KM

[IPM]2
+ [NAD+]

KM
[NAD+]1

+ [IPM][NAD+]
KM

[IPM]2·K
M
[NAD+]1

+ [KIC]
KM

[KIC]1
+ [NADH2]

KM
[NADH2]1

+ [KIC][NADH2]
KM

[NADH2]1KM
[KIC]1

(73)

v9 =

kcat
+9·[BCAATLeuB]
KM

[KIC]2·K
M
[Glut]2

[KIC][Glut]− kcat
−9·[BCAATLeuB]
KM

[Leu]1·K
M
[αKG]2

[Leu][αKG]

1+ [KIC]
KM

[KIC]2
+ [Glut]

KM
[Glut]2

+ [KIC][Glut]
KM

[KIC]2·K
M
[Glut]2

+ [Leu]
KM

[Leu]1
+ [αKG]

KM
[αKG]2

+ [Leu][αKG]
KM

[Leu]1·K
M
[αKG]2

(74)

2.4.2 Irreversible Convenience Kinetics (CKMMi)

By setting all product concentrations, apart from R2 and R9, to zero, we obtain an irreversible
version of this model containing 41 parameters:

v1 =

kcat
+1·[AHAS]·KI

1(
KM

[Pyr]1

)2 [Pyr]2(
1+ [Pyr]

KM
[Pyr]1

+
(

[Pyr]
KM

[Pyr]1

)2
)(

KI
1 +[Val]

) (75)

v4 =

kcat
+4·[BCAATValB]
KM

[KIV]1·K
M
[Glut]1

[KIV][Glut]

1+ [KIV]
KM

[KIV]1
+ [Glut]

KM
[Glut]1

+ [KIV][Glut]
KM

[KIV]1·K
M
[Glut]1

(76)

v5 =

kcat
+5·[BCAATValC]
KM

[KIV]2·K
M
[Ala]1

[KIV][Ala]

1+ [KIV]
KM

[KIV]2
+ [Ala]

KM
[Ala]1

+ [KIV][Ala]
KM

[KIV]2·K
M
[Ala]1

(77)

v7 =

kcat
+7·[IPMS]·KI

3
KM

[KIV]3·K
M
[AcCoA]1

[KIV][AcCoA](
1+ [KIV]

KM
[KIV]3

+ [AcCoA]
KM

[AcCoA]1
+ [KIV][AcCoA]

KM
[KIV]3·K

M
[AcCoA]1

)(
KI

3 +[Leu]
) (78)

v8 =

kcat
+8·[IPMDH]

KM
[IPM]2·K

M
[NAD+]1

[IPM][NAD+]

1+ [IPM]
KM

[IPM]2
+ [NAD+]

KM
[NAD+]1

+ [IPM][NAD+]
KM

[IPM]2·K
M
[NAD+]1

(79)

2.5 Stochastic Modeling based on the Langevin Equation (LANG)

It is expected that in the pathway under consideration neither the concentrations of participating
molecules are very low nor the system operates close to a point of instability. To demonstrate
the possibility of large-scale parameter optimization even for stochastic models and to model
the effects of random fluctuations in the metabolite concentrations, we consider a stochastic
description, based on the Langevin approach [6].

In the system under study a domain of macroscopically infinitesimal time intervals exists, as
required by condition 1 in Section 1.4, page 9, and each reaction fires many more times than once
due to the large molecular population (condition 2). The reaction propensities are calculated
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2.6 Optimization of the Model Parameters

according to Gillespie [7]. The propensities for the standard are essentially proportional to the
product of the number of participating molecules. For reactions that involve inhibition, we
assume that the propensity is inversely proportional to the inhibitor concentrations, similar to
the inhibition term occurring in the GMAKr model. This leads to the following equation system
for the stochastic simulation with 24 parameters:

v1 =
c1[PYR]2

2+2C1[Val]
+
√

c1

2+2C1Val
[PYR] Γ1(t)−

c11[AcLac]
1+C1[Val]

−

√
c11[AcLac]
1+C1Val

Γ11(t) (80)

v2 =
c2[AcLac][NADPH2]− c12[DHIV][NADP+]

1+C2[Val]

+

√
c2[AcLac][NADPH2] Γ2(t)−

√
c12[DHIV][NADP+] Γ12(t))√

1+C2[Val]
(81)

v3 =
c3[DHIV]− c13[KIV]

1+C3[Val]
+

√
c3[DHIV] Γ3(t)−

√
c13[KIV] Γ13(t)√

1+C3[Val]
(82)

v4 =c4[KIV][Glut]− c14[Val][αKG]+
√

c4[KIV][Glut] Γ4(t)−
√

c14[Val][αKG] Γ14(t) (83)

v5 =c5[KIV][Ala]− c15[Val][Pyr]+
√

c5[KIV][Ala] Γ5(t)− c15[Val][Pyr] Γ15(t) (84)

v6 =
c6[Val]

1+C4[Leu]
+

√
c6[Val]

1+C4[Leu]
(85)

v7 =
c7[KIV][AcCoA]− c17[IPM][CoA]

1+C5[Leu]
+

√
c7[KIV][AcCoA]−

√
c17[IPM][CoA]√

1+C5[Leu]
(86)

v8 =c8[IPM][NAD+]− c18[KIC][NADH2]+
√

c8[IPM][NAD+]−
√

c18[KIC][NADH2] (87)

v9 =c9[KIC][Glut]− c19[Leu][αKG]+
√

c9[KIC][Glut]−
√

c19[Leu][αKG] (88)

v10 =
c10[Leu]

1+C6[Val]
+

√
c10[Leu]

1+C6[Val]
. (89)

2.6 Optimization of the Model Parameters

This section briefly summarizes additional results of the parameter optimization that cannot be
mentioned in the main article corresponding to this document.

The quality of a parameter set can be evaluated by taking the distance between simulated
concentrations and a time series of measurements for each reacting species. Due to the high
orders of magnitude for the concentrations of metabolites, the Relative Squared Error (RSE),
which normalizes each distance by the measurement and is hence dimensionless, is used in this
study:

fRSE(x̂,X) =
dim(x̂)

∑
i=1

T

∑
t=1

(
x̂i(τt)− xti

xti

)2

. (90)

This distance is often called the “fitness” of a possible solution. Table 2 gives an idea of how
the relative distance of the best solutions for the deterministic models is computed. Each value
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2 Application to the Valine and Leucine Biosynthesis in C. glutamicum

in this table is the inner sum of the RSE, i. e., the sum over all 47 time points for the respective
metabolite. For each metabolite to be simulated, an independent spline is also computed using
the same settings as described in Section 2.1. Table 2 also lists the relative distance between
these splines and the measurements. The simulation results of the best solutions are shown in
Figure 4 for the reversible models and Figure 5 for the irreversible models.

Metabolite Spline GMAKr GMAKi GMMr GMMi CKMMr CKMMi

AcLac 1,437 1,861 1,417 1,849 2,055 1,339 1,453
DHIV 11,399 6,484 7,583 6,470 7,899 6,781 5,798
IPM 0,905 2,295 2,190 2,336 2,033 1,957 1,831
KIC 2,105 2,868 3,370 2,826 2,960 2,930 3,651
KIV 1,099 2,260 4,060 2,272 4,115 1,828 3,615
Leu 2,044 2,231 4,376 2,087 4,021 3,230 3,814
Val 0,680 2,327 1,591 2,441 1,394 2,035 1,347

∑ 19,670 20,326 24,587 20,280 24,477 20,100 21,511

Table 2: Computation of the fitness value for each deterministic model

To obtain these solutions we apply a random search (Monte Carlo Optimization, MCO) to
calibrate the parameters for each model. As the results of this procedure cannot nearly approach
the quality of independently fitted splines, we apply the nature-inspired heuristic optimization
procedures Hill Climber (HC), Simulated Annealing (SA), real-valued and binary Genetic Algo-
rithm (GA), standard and covariance matrix adaptation Evolution Strategy (ES) with and with-
out elitism (plus strategy), Differential Evolution (DE), particle swarm optimization (PSO) and
Tribes to all deterministic models with standard settings. Subsequently, the settings of the most
promising procedures are systematically benchmarked to further improve the fit of the mod-
els to the measurements. The Langevin model is optimized using the most successful methods
from the fine-tuning step. For details of the optimization procedures, [see Additional file 1].
All optimization procedures, models and the data used in this study are freely available in the
optimization framework EvA2 [21, 22].

Figure 6 shows the progress of the five most successful optimization procedures with their
standard settings in 100,000 fitness evaluations. Each procedure is started in twenty multi-runs,
of which the best is depicted here. The quality of the initial fitness rises with the complexity
of the model. All plots are limited to a fitness of 120 for the sake of a better visualization.
In most cases, the settings-free Tribes algorithm needs more fitness evaluations than the other
methods to find a good solution. And in most cases again, the algorithms do not show significant
improvement after 60,000 evaluations.

From the set of parameter vectors obtained during the optimization process, we select all pa-
rameter vectors with a fitness less than 25, focusing on the three deterministic reversible models.
Figures 7 through 9 give histograms that depict the distribution of the parameters. All models
have in common that most parameter values are rather small.
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Figure 4: The best fit of all reversible deterministic and the Langevin models
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(a) Acetolactate (AcLac)
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(b) Dihydroxyisovalerate (DHIV)
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(c) Isopropylmalate (IPM)
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(d) 2-Ketoisocaproate (KIC)
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(e) 2-Ketoisovalerate (KIV)
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(f) Leucine (Leu)
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Figure 5: The best fit of all irreversible deterministic models
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(e) GMMi
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Figure 6: Progress of the optimization algorithms
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Figure 7: Histograms of the parameter distribution for the GMAKr model

kcat++1

F
re

qu
en

cy

0 100 300

0
20

0
40

0

kcat++2

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

kcat++4

F
re

qu
en

cy

0 1 2 3 4

0
40

80
12

0

kcat++5

F
re

qu
en

cy

0 10 30 50

0
50

15
0

kcat++7

F
re

qu
en

cy

0 1 2 3 4 5 6

0
20

0
40

0

kcat++8

F
re

qu
en

cy

0 100 300

0
20

0
40

0

kcat++9

F
re

qu
en

cy

0 1 2 3 4

0
50

15
0

kcat−−1

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

kcat−−2

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

kcat−−4

F
re

qu
en

cy

0 1 2 3 4 5 6

0
20

40
60

kcat−−5

F
re

qu
en

cy

0 5 10 20

0
20

0
40

0

kcat−−7

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

kcat−−8

F
re

qu
en

cy

0 50 100 150

0
20

0
40

0

kcat−−9

F
re

qu
en

cy

0 2 4 6 8

0
50

15
0

vm++3

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

vm−−3

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

vm6

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

vm10

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

Km1

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

Km2

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

Km3

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

Km4

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

kia1

F
re

qu
en

cy

0e+00 4e+07 8e+07

0
20

0
40

0

kia2

F
re

qu
en

cy

0e+00 3e+07 6e+07

0
20

0
40

0

kia3

F
re

qu
en

cy

0e+00 3e+07 6e+07

0
20

0
40

0

kib1

F
re

qu
en

cy

0e+00 4e+07 8e+07

0
20

0
40

0

kib2

F
re

qu
en

cy

0e+00 4e+07 8e+07

0
20

0
40

0

kib3

F
re

qu
en

cy

0e+00 4e+07 8e+07

0
20

0
40

0

ki1

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

ki2

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

ki3

F
re

qu
en

cy

0 500 1500

0
20

0
40

0

Figure 8: Histograms of the parameter distribution for the GMMr model
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Figure 9: Histograms of the parameter distribution for the CKMMr model 25
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