
A Computational Framework for Ultrastructural 
Mapping of Neural Circuitry Supplementary Protocols

 J.R. Anderson1, B.W. Jones1, J-H Yang1, M.V. Shaw1, C.B. Watt1, P. Koshevoy2,3, J. Spaltenstein3, E. 
Jurrus3, Kannan U.V.3, R. Whitaker3, D. Mastronarde4 , T. Tasdizen3,5, R.E. Marc1

Affiliations: 1Dept. Ophthalmology, Moran Eye Center, University of Utah; 2Sorenson Media, Salt Lake City, UT; 3Scientific Comput-

ing and Imaging Institute, University of Utah; 4The Boulder Laboratory For 3-D Electron Microscopy of Cells, University of Colorado, 
Boulder; 5Dept. Electrical and Computer Engineering, University of Utah.

Details of image processing tools

ir-fft 
The purpose of ir-fft is  to find  the ordering  of random 
image tiles. The first sub-problem is to find pairs  of over-
lapping  tiles. The main constraint  at this stage of the algo-
rithm is computational complexity because this proce-
dure will be applied  to approximately n2 pairs where n is 
the total number of tiles in a section. If we restrict the 
class of allowed coordinate transformations between 
pairs of  tiles to translation, a fast  closed-form solution 
exists  [1]. Let F[S](u,v)  denote the two-dimensional Fou-
rier transform of image S(x,y). For simplicity we refer to 
F[S](u,v)  as F[S]. The Fourier transform shift property [2] 
provides a  simple rule relating  the Fourier transforms of 
an image and a shifted version of it:
F[S(x-xo, y-yo)] = e-j(uxo+vyo) F[S(x,y)]  (1)
Following Girod and Kuo [1], we define a displacement 
probability image between two images Si and Sj :
Pi,j (x,y) = Real [F-1 [ Φij (Φii Φjj)-1/2]  (2)

where Φij = F[Si ] F[Sj ]* is  the cross-correlation of the 
two images, F[Sj]* being  the complex conjugate.  Simi-
larly, Φii and Φjj are the auto-correlations. Using  the Fou-
rier transform shift property defined in Equation (1) it can 
be shown that if Si and  Sj differ only by a displacement 
vector (xo,yo), the displacement probability image in 
Equation (2) reduces to a Dirac function 
Pij (x,y) = δ (x-xo,y-yo), 
assuming  periodicity of the images.  In other words, Pij 
(x,y) will  have a non-zero entry for only a single dis-
placement vector. For partially overlapping  images,  the 
exact relationship  Pij (x,y) = δ(x-xo,y-yo) does not hold. 
However,  if the amount of overlap is  sufficient, the 
maximum of Pij (x,y) should correspond to the true dis-
placement between images Si and Sj. In practice, finding 
this maximum is non-trivial because for most  TEM im-
ages  P is very noisy. Also, Pij for two non-overlapping 

images may contain several weak maxima, or none at all. 
These problems were not addressed in Girod and  Kuo 
[1].

We have found four steps necessary to identify the loca-
tion of the correct maxima in P. The first is to pre-smooth 
images to reduce noise. The second  is to select and apply 
a threshold to P to isolate global peaks. We choose the 
threshold at the 99th percentile of the histogram of P: i.e. 
1% of the total pixels in P are considered as possible 
maxima locations. Third, we locate clusters of at least 
five 8-connected  pixels, indicating  a strong  maximum. If 
the maxima are scattered  across P, it is likely there is no 
strong  maximum. Maxima coordinates are calculated  as 
the centers of mass of the corresponding  clusters. The 
final  step is to verify which, if any, of these maxima is the 
true displacement between the image pair. Non-
overlapping  image pairs typically produce a Pij with sev-
eral maxima points at roughly the same value, while the 
Pij of two matching  tiles produces one maximum signifi-
cantly stronger than the rest. If this maximum is at least 
twice as strong  as all others, it is marked as a good 
match; otherwise,  we conclude that  the tiles do not over-
lap. Displacement vectors with less than 5% overlap are 
discarded  since true tiles are expected  to have as much 
as  15% overlap.  The method  works best for tiles with at 
least 10% overlap. For further details, we refer the reader 
to Koshevoy et al. [3]. 
 
The second sub-problem is finding  the correct  layout of 
the tiles  into the mosaic space. For any pair of tiles, al-
ternative mappings exist. A direct mapping  exists if the 
pair was determined  to overlap. But we also track cas-
caded  mappings via intermediate tiles. For example, 
there may exist a mapping  S0 : S1 between tiles S0 and 
S1,  and another mapping  S1 : S4 between tiles S1 :  S4. A 
mapping  S0 : S4 between tiles S0 and  S4 can be created 
via the intermediate tile S1 as an alternative to the direct 
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mapping. The mapping  with the least cost is preferred 
even when it has greater cascade length. The cost func-
tion is the sum of squared  intensity  differences in the 
overlap  region, normalized  by the overlap area. Using 
these redundant mappings between any two tiles  pre-
sents  a great opportunity to select the best mapping  pos-
sible, especially if an error occurred  in the computation 
of the direct mapping. To build  a mosaic, we select an 
arbitrary tile as an anchor or first tile.  Then the tile with 
the lowest  best mapping  cost to the anchor image, com-
puted as described  above,  is placed into the mosaic.  Tiles 
are successively placed always choosing  the best map-
ping to tiles already in the mosaic.

It  is possible that meso-scale brightness variations might 
compromise mosaic alignments. Tiles with problematic 
intensity variations can be preprocessed using  ir-clahe 
(Contrast Limited  Adaptive Histogram Equalization; 
CLAHE) before auto-tiling  with ir-fft,  and/or with ir-blob 
(a  coarse scale  blob  and  edge detector) prior to register-
ing  assembled  slices with ir-stos-brute (see below). De-
pending  on the user’s preferences, the computed  trans-
forms can be applied  to either the pre- or unprocessed 
tiles for visualization with ir-assemble, ir-stom (slice-to-
movie) or the other viewers.

ir-translate
Using  the approximate positions from metadata, only 
tiles that are known to overlap  are matched using  the 
Fourier shift method  previously described. This reduces 
the complexity of the method from a quadratic to a linear 
function of the number of tiles.  Next, a tension vector 
proportional  to the offset between the approximate posi-
tion, and the preferred position as found by matching, is 
defined. This tension vector can be thought of  as a  spring 
between the two tiles pulling  the two tiles toward their 
preferred relative  position. Most  tiles will have multiple 
neighbors  and  will therefore experience multiple ten-
sions.  The sum of the tension vectors experienced by 
each tile will be a net force pushing  each tile towards a 
more desirable position. Continuing  the analogy of  mul-
tiple  springs, the energy of each tension vector can be 
thought of as the potential  energy stored in a spring, thus 
a global system energy can be calculated  by computing 
the sum of the squares of all the tension vectors. The 
algorithm iterates over each tile in the slice multiple 
times,  nudging  all the tiles with each pass.  This will result 
in finding a local minimum of the global system energy. 

ir-refine-grid
Non-linear warp refinement and is  accomplished with ir-
refine-grid. During  the earlier stages of  algorithm devel-
opment,  several continuous polynomial transforms were 
explored, in particular a bivariate cubic radial distortion 

transform and a bivariate cubic Legendre polynomial 
transform. These transforms suffer from a trade-off where 
the stability of the transform is  related  inversely to the 
degree of the polynomial.  Our final approach uses a 
discontinuous transform with local phase correlation. 
Each tile  is sampled  onto a coarse uniform triangle mesh. 
Each vertex in the mesh stores two sets of coordinates: 
the local tile coordinates and  the mosaic space coordi-
nates. The image is warped by changing  the mosaic 
space coordinates directly. To map  a coordinate from the 
mosaic space into the tile space, the tile mesh is 
searched for the triangle containing  the given mosaic 
space point. Then, the barycentric coordinates of the 
intersection point are used to calculate the correspond-
ing  tile space point by interpolating  the tile space vertex 
coordinates. The mapping  from tile space into mosaic 
space is trivial  due to the uniform structure  of  the triangle 
mesh in the tile space. One has  to find the mesh quad 
containing  the tile space point and perform a bilinear 
interpolation between the mosaic space coordinates of 
the quad vertices. These operations are implemented in 
an efficient manner using  OpenGL (Open Graphics Li-
brary).

At each vertex in the mesh a small, corresponding 
neighborhood  is sampled  from all of the tile neighbors  in 
the mosaic. The neighborhood need only be large 
enough to capture a meaningful amount of image texture 
for phase correlation to work: 96x96 pixels. The mesh 
nodes  are spaced at approximately one third of the 
neighborhood  size. The two neighborhoods are matched 
using  the same Fourier shift method described for ir-fft. 
The dense field of displacement vectors  produced  by this 
matching  is used to correct  the mosaic space coordinates 
of the vertex. It is  possible for tile matching  to produce 
mismatches, so the calculated vectors at each vertex are 
median filtered to remove the outliers. The vectors  are 
further de-noised with a Gaussian smoothing  filter. This 
post-processing  requires 2-3  passes to ensure conver-
gence. For further details, we refer the reader to  
 Koshevoy [4].  

ir-tweak
ir-tweak is a manual image registration tool using  thin-
plate  spline transforms   implemented using  OpenGL, Qt 
(the “Cute” Widget  Toolkit), ITK (The Insight Segmenta-
tion and  Registration Toolkit), GLEW (OpenGL Extension 
Wrangler Library), and Cg  (C for Graphics shading  library 
developed by Nvidia and  Microsoft). Ir-tweak imple-
ments  fragment shading, reducing  the memory footprint 
of the image textures and  uses a thin-plate spline trans-
form.
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A Tutorial on Computational Molecular 
Phenotyping (CMP)   

Concept
CMP is based on four technologies:  
• quantitative immunoprobes  
• ultrathin section arrays
• imaging
• computational N-space classification 

CMP transforms complex image sets that  must otherwise 
be qualitatively perused  by humans (>102  sections, > 
106 cells, 8-36  probes) into N-space data matrices 
viewed by an algorithmic operator – a statistical pattern 
classifier [5]. The classifier parses the matrices and  allows 
a reverse transform into a theme map optimized  for hu-
man visualization. Theme maps index the underlying  N- 
space molecular signatures as well as structural signa-
tures (cell size, position, density, texture, patterning, etc). 
A molecular+structural signature is the quantitative reali-
zation of  a  phenotype. It is  continuously extensible and 
managed  by well-known statistical rules.  A detailed de-
scription of CMP calibration, imaging, visualization and 
clustering  is provided in the appendix to [6] Marc et al 
(1995)  Pattern recognition of amino acid  signatures in 
retinal neurons. J Neurosci 15: 5106-5129. This is an 
abbreviated overview of some of that content.
 
History
The notion of a characteristic molecular signature was 
developed independently by Thomas Hökfelt and Do-
minic  Lam in the mid-1980’s (e.g.[7]). The practical con-
cept of  characterizing  cells by small molecule signatures 
was developed by Ottersen and  his colleagues 
[8,9,10,11].   The Marc laboratory began developing  opti-
cal CMP  using  silver-intensified immunogold  methods in 
1986, some four years after code for analysis of  multis-
pectral satellite imagery was declassified and commer-
cialized  (see PCI Geomatica Link). The data structures 
and  interpretive objectives of immunocytochemical 
analyses are congruent to remote sensing  structures and 
goals  [6,12]and are based  on classification theory and 
Bayesian statistics.   Studying  classes of structures involves 
two questions.

Traditional parametric statistics asks: Are x and y drawn 
from the same distribution?   

Classification asks a more challenging question: Did x 
come from distribution A or B or C …?   

This challenge is addressed in the publications of Fix and 
Hodges [13,14], Cover and Hart [15], Tou and Gonzales 

[16], Duda & Hart [17]. These are the “Hodgkin-Huxley” 
papers of classification theory.  

Rationale
CMP approaches the ideal classification method for het-
erocellular metazoan tissues. There are two antipodal 
designs for classifying  cells: Univariate and  multivariate 
classification. The univariate design is the standard im-
munocytochemical approach. It requires one validated 
probe per class  and hundreds of samples to test them all. 
Validation is tissue and species specific. For example, the 
retina clearly has more than >60 cell classes based on 
several estimates and tracking  them all would  require 
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Figure CMP 1. Histograms of classification comparing 
four-channel immunocytochemistry (red column), resin 
microscopy (green column), CMP (blue column), and 
CMP + excitation mapping (yellow column) over the 
known class range of the mammalian retina (white col-
umn). Each horizontal band represents a class or super-
class. The numbers of bands in a column indicate a 
method’s absolute resolution. CMP expands resin classes 
into 22 unique superclasses and CMP + excitation map-
ping nearly doubles that. Only CMP provides strong clas-
sification and 100% coverage. “4 ch icc” uses cone op-

sin, PKC α, TH (tyrosine hydroxylase) and GC (glutamine 
synthetase) as markers. NNCs , non-neuronal cells. 

http://www.pcigeomatics.com/index.html
http://www.pcigeomatics.com/index.html


>60 validated probes. An example of the best univariate 
work is Haverkamp and Wässle [18], and  they specifi-
cally note: “Only a few markers labeled only one cell 
type:  Most antibodies recognized specific groups of neu-
rons”. 

The weaknesses of the univariate approach are:
• most essential probes don’t yet exist or haven’t been 

validated
• species-independence cannot be assured
• data fusion is usually impossible
• no proof of completeness or correctness is possible

Conversely, multivariate  classifiers use basis sets (linearly 
independent measures in a vector space) of probes tar-
geting  overlapping  classes to create an N-space matrix 
for a single sample.  The strengths of  multivariate CMP 
approach are: 
• probes for concurrent use exist
• all small molecule probes are species independent and  

work in all tissues, in all organisms
• data fusion methods exist and are robust
•  mathematically complete coverage is assured

Fig. CMP 1 graphically compares the classification power 
of univariate immunocytochemistry with CMP in the 
mammalian retina. Even a theoretically optimal conven-
tional  preparation on one frozen section with 4 channels 
of immunocytochemical  data of captures but a tiny seg-
ment of the    known classes with qualitative signals and 
poor coverage. Conversely CMP and  CMP  + excitation 
mapping  [19,20,21] successively expand class resolution 
to high levels with 100% cell coverage.  Every cell gets 
tagged  with an N-space signature, even if  the biological 
meaning  is  yet  unknown. The multivariate CMP approach 
is  also extensible as selected macromolecular [22,23] 
and  ultrastructural signals [24,25] can be included. CMP 
packs data to unprecedented densities. CMP analysis is 
independent of section thickness [6],  and  ultrathin sec-
tioning  allows high sampling  densities in every cell. A 
single 10 µm wide cell yields = 250 ultrathin 40 nm sec-
tions.  We can compress up  to 12-36  channels  of quanti-
tative data  into twelve such serial sections, using  less 
than 5% of the cell.

Probe Libraries: Theory & Practice
CMP uses multiple basis probes to increase N-space 
resolution and  coverage.   CMP probes can track intra-
cellular concentration differences  as small  as 40 µM [21] 
(Fig. CMP 2). This gives robust classifying  power. We 
think of  discrete 2D image metrics  as pixels, 3D volume 
metrics as voxels, and  N-space metrics as “nixels”.  The 
resolution R of a classification space is R = ∏∆sn  where 
n is a molecular channel, ∆S is signal resolution, and the 

power function is evaluated  over the interval n=1 to N, 
the total number of  channels. With N=8  channels, a 
minimum ∆S=8 resolved steps per channel (3 bits, much 
less  than achieved), R = 16.8  × 106 nixels of molecular 
resolution for segmenting  retina into 60 hypervolumes of 
> 2 × 105 nixels/class.  Thus CMP has intrinsic classifica-
tion power.

In 1945 Karl Landsteiner [26] demonstrated  regio- and 
stereospecific binding  of small molecules by IgGs and 
tissue level discrimination of even enantiomers (e.g. D- 
and  L- aspartate) is now routine [6], as  is targeting  free 
amines in general [6,8,12,21,27,28,29,30,31,32,33,34]. 
Anti-hapten IgGs have successfully been made against 
targets  as complex as C60 fullerenes, as nonpolar as cho-
lesterol, or as large as vitamin B12 [35,36,37].  Most 
small molecules are potential  haptens. A large library of 
probes  targeting  small molecules is currently in use in 
the Marc laboratory. See CMP Probes Link.

Quantitation
IgG binding  in resin-based CMP is limited  to the surfaces 
of sections [6], making  CMP a 2-phase assay with better 
physical properties for quantitation than traditional  im-
munocytochemistry [12,21]. CMP can be calibrated 
against  standards containing  known amounts of target 
hapten (e.g. Marc and Jones, [21]). Either fluorescence 
(intensity) or density methods may be used. CMP based 
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Figure CMP 2. Differential GABA content of cells in the gan-
glion cell layer of the rabbit retina visualized by quantitative 
GABA mapping on a 250 nm section. Scaling was determined 

from artificial standards. Cellular contents range from 50 μM to 
10 mM. Some ganglion cells are literally invisible in the array 
because they have the same GABA content as the surrounding 
Müller cells (ellipse). Other cells can be differentiated from the 

Müller cells by having contents roughly 40 μM higher (box); a 
strongly immunoreactive starburst amacrine cell is also 
contained in the box. The image is density scaled. Scale bar, 25 
µm. From Marc and Jones [21].

http://prometheus.med.utah.edu/~marclab/CMP_probes.html
http://prometheus.med.utah.edu/~marclab/CMP_probes.html


on silver-intensified immunogold  [38],  has advantages of 
high sensitivity,  good dynamic range and  archival imag-
ing. Fig. CMP 2 is reproduced from Marc and  Jones [21] 
and  demonstrates both the range and precision of CMP, 
calibrated directly against artificial standards. Marc et al. 
[12] also showed direct calibration using  immunodot 
assays. The practical  sensitivity of CMP ranges from 50 
uM to 10 mM, which covers the range of differential 
expression in most  cells. By using  standardized image 
capture  protocols [21],  CMP imagery is quantitative and 
allows direct readout of cellular concentrations accord-
ing  to the “Silver” equation:  P = (Cn⋅ Pmax)/(Cn + σn), 
where P  = pixel  value, Pmax is the saturated pixel  value, 
C is concentration, n is the cooperativity (analogous to 
video gamma) and σ is the concentration at P=0.5 (Fig. 
CMP 3). However, transforming  images to concentration 
maps is not necessary for quantitative statistical compari-
sons, segmentation, or classification.

Ultrathin section arrays
The second key to CMP is production of high-quality 
section arrays.  A detailed protocol is  located  at  CMP 
Protocol Link. There are three elements to the production 
of high quality arrays:  fixation, resin embedding, and 
sectioning.  

Fixation. The detection regime for small  amines is a uses 
glutaraldehyde (GA) cross-linking  (e.g. Marc and Liu, 
[24]).  This  forms a dense matrix with an average pore 
diameter of   2-5 nm. IgGs (≈ 150 kD) cannot penetrate 
the matrix. Thus the precise surfaces  produced  by resin 
ultramicrotomy are ideal and  independent of  section 
thickness (Fig. CMP. 4).  Immunogold  detection using 

section etching  is quantitative and reproducible [6,9,12]. 
The epitope surface ‘above’ the matrix is likely to be only 
≈ 1 nm deep and, in this volume, a 10 mM target thus 
exposes ≈ 6000 randomly oriented epitopes/µm2.  Our 
routine detection limit with silver-intensification is ≈ 50 
µM, corresponding  to 30 true targets/µm2. These and 
other calculations suggest that the efficiency of small 
molecule  trapping  is very high, perhaps 85% or higher 
(see CMP Substrates Link)

Resin  embedding and sectioning.  We have tested many 
resin options and none approaches the flexibility and 
stability  of epoxide resins with dodecenylsuccinic anhy-
dride cross-linking  and  2,4,6  tris-(dimethyaminomethyl)-
phenol  end-linking. This resin is electron-beam stable 
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Figure CMP 3. Calibrating CMP. Competitive displacement 

curves for IgG D, IgG E, IgG J, IgG Q, IgG γ run concurrently 

and aligned at σ, the half saturation point of the Silver Equation. 
The curves were pinned by visualizing IgG E binding to an arti-
ficial standard stack. 

Figure CMP 4. CMP precision. Ultrathin resin sections of rabbit retina probed for glutamate and visualized with calibrated silver metal-
lized immunogold binding. All signal in the images is glutamate detection. There is no ‘background’ and the SNR > 103:1. The left section 
is 40 nm thick and the right 160 nm. The scatterplot demonstrates that the signals are identical and correlated over the entire metallization 
range.

http://prometheus.med.utah.edu/~marclab/protocols_CMP.html
http://prometheus.med.utah.edu/~marclab/protocols_CMP.html
http://prometheus.med.utah.edu/~marclab/protocols_CMP.html
http://prometheus.med.utah.edu/~marclab/protocols_CMP.html
http://prometheus.med.utah.edu/~marclab/CMP_substrates.html
http://prometheus.med.utah.edu/~marclab/CMP_substrates.html


and  allows ultrathin sectioning, but remains fully remov-
able by anhydrous methoxide etching. Routine CMP is 
done with 200 nm diamond-cut serial sections floated 
onto 25 µl ultrapure water droplets on ultraclean array 
spot  slides (HTC®  hydrophobic mask slides, Thermo 
Scientific). Sectioning  is done manually and  any quali-
fied  ultrastructural technician can readily prepare section 
arrays.  Resin embedding  also allows multiplexing  of 
samples  [12,19] and  as many as a dozen tissues  can be 
reformatted  into a single bloc (see CMP  Plastic Proto-
cols). Figure CMP 5 shows a typical 12-well tissue array.

Imaging
Because silvered  CMP is completely archival,  images can 
be captured  under optimal conditions of signal-to-noise, 
with stabilized power supplies and any good 8-bit scien-
tific monochrome camera. We prefer capturing  entire 
sections  at a resolution of  183 nm/pixel (slightly over-
sampled)  with a 1.0 NA planapochromatic oil immersion 
objective and high-resolution scanning stage. Capture 
and  montaging  protocols are detailed in Marc and Cam-
eron [39] and   Marc and Jones [21] and  at the CMP Pro-
tocol Link. Captured images are mosaicked  and  regis-
tered into large multispectral datasets for classification.

Classification
Pattern recognition theory was developed in large part for 
multispectral analysis of  planetary imaging  data. A set of 
serial sections probed for small molecules is similar to a 
series of planetary photographs taken through different 
spectral filters: common loci  across images will  index a 
list  of values representing  planetary spectral reflectance 
or small molecule contents. Viewing  the data as color 
triplets  aids in finding  the obvious relations, but is not a 
statistical assessment.  The more powerful is pattern rec-
ognition in N-space, and clustering  in particular. Algo-
rithms such K-means and isodata clustering  extract N-
dimensional means and variances for classes by calculat-
ing  hypersurface decision boundaries [16,17].  How such 
algorithms work is explained  in great detail in Marc et al. 
([6]).

Fig. CMP 6 is an example of data from cells with over-
lapping  distributions in univariate space though separa-
ble  in 2-space. Visually interpreting  data sets of higher 
dimensionality  is difficult or impossible, but computing 
classes and decision boundaries is not. Thus a map  of 
theme class memberships can be generated [6,21,39] 
and  explored to visualize the underlying  signatures in 
more detail. Derived classes can be tested  for their statis-
tical separabilities by a probability  of error (pe) assess-
ment,  typically by calculating  the N-space distances of 
the data clouds (e.g. transformed divergence or Bhattach-
yara distance) and modeling  pe. This is a powerful meas-

ure,  because separable classes are always significant, but 
not vice versa. Though the bivariate distributions have 
little  overlap  and  a low pe, the univariate data overlap 
extensively with high pe since univariate data  cannot 
encode covariance.  If one were required to name the 
group  from which a given sample arose based on the 
strength of one type of signal alone, the error would be 
unacceptably  high. For example, the gray cell indicated 
at  the top of Figure CMP 5 would be misclassified  50% 
of the time and the integrated  error for the entire range of 
data would be 0.2, over an order of magnitude higher 
than the bivariate pe. Such univariate  errors are non-
trivial and common in immunocytochemistry. 

The results of K-means classifications can be visualized 
many ways:  
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Figure CMP 5. A typical 12-well tissue array with sec-
tions positioned in a repeating reverse N pattern, visual-
ized with silver metallization.

Figure CMP 6. Summary bivariate distributions of ideal-
ized glutamate and aspartate signals for two model cell 
classes 1 and 2. The ellipses are the 2 SD borders of the 
bivariate data sets and the unimodal profiles are the mar-
ginal distributions for each cell class. A datapoint in class 
2 possessing an indeterminate signal in univariate space is 
indicated by arrows. Revised from Marc et al., 1995.

http://prometheus.med.utah.edu/~marclab/protocols_plastic.html
http://prometheus.med.utah.edu/~marclab/protocols_plastic.html
http://prometheus.med.utah.edu/~marclab/protocols_plastic.html
http://prometheus.med.utah.edu/~marclab/protocols_plastic.html
http://prometheus.med.utah.edu/~marclab/protocols_CMP.html
http://prometheus.med.utah.edu/~marclab/protocols_CMP.html
http://prometheus.med.utah.edu/~marclab/protocols_CMP.html
http://prometheus.med.utah.edu/~marclab/protocols_CMP.html


• As theme maps (i.e. political maps) by color coding 
every pixel in the original image according to theme 
class ([21]; CMPView © JA Anderson; Fig. CMP 7)

• As bivariate probability density distributions (Fig. CMP 
6)

• As matrices of univariate probability density distribu-
tions viewed as a small multiple plot ([40]; CMPView 
© JA Anderson)

• As 2N-plots where each cell is mapped as a set of su-
perimposed bivariate plots ([21]; CellKit © RE Marc; 
Fig. CMP 8)

• As parallel plots (CMPView © JA Anderson) developed 
by Inselberg [41], on which 2N-plots were based. 
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Figure CMP 7. A formal theme map of the zebrafish retinal mar-
ginal zone. Each cell type is coded by class membership based 
on isodata clustering and histogram deconvolution. Abbrevia-
tions: iGCs, immature ganglion cells; MCPs, Müller cell proc-
esses; mGCs, maturing ganglion cells; GABA mACs, maturing 
GABA amacrine cells; MZ1Cs, marginal zone 1 cells; MZ2aCs, 
marginal zone 2a cells; MZ2bCs, marginal zone 2b cells; MZ3Cs, 
marginal zone 3 cells; MZ4Cs, marginal zone 4 cells, PRs, photo-
receptors; ?Cs, unknown cells associated with MZ4; VCs, vascu-
lar cells. From Marc and Cameron, 2003.

Figure CMP 8. N-plot for the ADEGJQτγ basis set. This N-plot 
was derived from the molecular phenotype data of zebrafish 
class 1 GABA amacrine cells (GABA AC1). Each dot encodes a 
bivariate mean on a logarithmic mM scale (i.e. –1 = 0.1 mM, 0 
= 1 mM, 1 = 10 mM), and is bounded by a 1 standard deviation 
ellipse. Four pairs of points represent a projection of 8-space 
into 2-space, and distinctions among classes are thus repre-
sented by the differing patterns of signals in N-plots (see Marc 
and Jones, 2001).  The XY pairs are arbitrarily formed but con-

stant throughout this manuscript: AJ (grey), DQ (cyan), Eγ (gold), 

Gτ (magenta).  In this plot, it can be quickly determined that the 
mean A, D, G, E and J values are less than 1 mM in this class, 
because their coordinates are all below the log 0 mM line. Con-

versely, the mean Q, γ and τ values are all >> 1 mM. 
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