Supplementary Materials

Spectroscopic properties of synthesized compounds

Trimethyl *cis*-homoaconitate 5a (trimethyl (1*Z*)-but-1-ene-1,2,4-tricarboxylate). Yellow oil. ¹H NMR (400 MHz, CDCl₃, δ): 5.90 (s, CH=C, 1H), 3.83 (s, OCH₃, 3H), 3.73 (s, OCH₃, 3H), 3.70 (s, OCH₃, 3H), 2.69 (t, *J*= 7.5 Hz, CH=C-C*H*₂, 2H), 2.55, (t, *J*= 7.3 Hz, CH₂- *CH*₂-CO-, 2H).

¹³C NMR (100 MHz, CDCl₃+TMS, δ): 172.2 (OC=O), 168.6 (OC=O), 165.3 (OC=O), 147.8 (C-2), 120.9 (C-1), 52.5 (OMe), 51.95 (OMe), 51.90 (OMe), 31.5 (CH₂), 29.2 (CH₂).

GC-MS (CI+, CH₄) *m/z* (% relative intensity, ion): 139 (100%), 167 (71%), 199 (47%), 140 (8%), 259 (2%, M + C₂H₅⁺). GC-MS/MS (199 *m/z*): 139 (100%), 167 (23%), 111 (6%), 127 (5%).

HRMS-CI (*m*/*z*): M⁻ calcd for C₁₀H₁₄O₆ 230.0790; found, 230.0786.

NOE difference spectroscopy: Irradiation at 5.90 ppm shows enhanced resonances at 3.73, 2.69 and 2.55 ppm. Irradiation at 2.69 ppm shows enhanced resonances at 5.90 and 3.83 ppm. High-resolution ¹H-NMR indicates the vinylic proton is coupled to a methylene group (J=1.3 Hz).

Sodium cis-homoaconitate.

¹H NMR (400 MHz, D₂O+TSP, δ): 5.74 (s, CH=C, 1H), 2.59 (t, *J*= 7.6 Hz, CH₂, 2H), 2.46, (t, *J*= 7.4 Hz, CH₂, 2H).

LC-MS/MS (ESI-, CID): Fragmentation of the 187 m/z [M-H]⁻ molecular ion gave product ions with peaks at 143 m/z and 125 m/z.

Trimethyl *trans*-homoaconitate (trimethyl (1*E*)-but-1-ene-1,2,4-tricarboxylate). ¹H NMR (400 MHz, CDCl₃, δ): 6.82 (s, CH=C, 1H), 3.82 (s, OCH₃, 3H), 3.78 (s, OCH₃, 3H), 3.67 (s, OCH₃, 3H), 3.09 (t, *J*= 7.7 Hz, CH=C-CH₂, 2H), 2.54, (t, *J*= 7.8 Hz, CH₂- CH₂-CO-, 2H).

GC-MS (CI+, CH₄) m/z (% relative intensity, ion): 139 (100%), 167 (85%), 199 (55%), 140 (7%), 231 (6%, MH⁺), 259 (6%, M + C₂H₅⁺), 111 (3%).

GC-MS/MS (167 m/z): 139 (100%), 123 (21%), 110 (9%), 108 (6%).

NOE difference spectroscopy: Irradiation at 6.82 ppm shows no enhanced resonances. Irradiation at 3.09 ppm showed enhanced resonance at 2.54 ppm.

Sodium trans-homoaconitate.

¹H NMR (400 MHz, D₂O+TMS, δ): 6.51 (s, CH=C, 1H), 2.74 (t, *J*= 8.1 Hz, CH₂, 2H), 2.54, (t, *J*= 7.9 Hz, CH₂, 2H).

Dimethyl 2-oxoadipate (dimethyl 2-oxohexanoate).

¹H NMR (400 MHz, CDCl₃+TMS, δ): 3.88 (s, OCH₃, 3H), 3.68 (s, OCH₃, 3H), 2.94 (t, *J*= 7.1 Hz, CH₂, 2H), 2.42-2.37 (m, 2H), 1.98 (quintet, 2H).

Trimethyl *cis*-homo₂-aconitate (trimethyl (1*Z*)-pent-1-ene-1,2,5-tricarboxylate). ¹H NMR (400 MHz, CDCl₃+TMS, δ): 5.80 (s, CH=C, 1H), 3.83 (s, OCH₃, 3H), 3.73 (s, OCH₃, 3H), 3.68 (s, OCH₃, 3H), 2.44 (m, 4H), 1.84, (quintet, 2H).

¹³C NMR (100 MHz, CDCl₃+TMS, δ): 173.2 (OC=O), 169.0 (OC=O), 165.3 (OC=O), 149.4 (C-2), 120.2 (C-1), 52.4 (OMe), 51.9 (OMe), 51.6 (OMe), 33.5 (CH₂), 32.8 (CH₂), 22.3 (C-4).

GC-MS (CI+, CH₄) *m/z* (% relative intensity, ion): 152 (100%), 245 (51%, MH⁺), 124 (42%), 213 (34%, [M-OCH₃]⁺), 180 (22%), 185 (14%, [M-C(=O)OCH₃]⁺).

GC-MS/MS (213 m/z): 152 (100%), 185 (76%). GC-MS/MS (180 m/z): 152 (100%), 124 (15%).

HRMS-CI (*m*/*z*): MH⁺ calcd for C₁₁H₁₇O₆ 245.1025; found, 245.1027.

Sodium *cis*-homo₂-aconitate.

¹H NMR (400 MHz, D₂O+TSP, δ): 5.75 (s, CH=C, 1H), 2.47-2.34 (m, 4H), 1.77, (quintet, 2H).

Trimethyl *trans*-homo₂-aconitate (trimethyl (1*E*)-pent-1-ene-1,2,5-tricarboxylate). ¹H NMR (400 MHz, CDCl₃+TMS, δ): 6.79 (s, CH=C, 1H), 3.81 (s, OCH₃, 3H), 3.77 (s, OCH₃, 3H), 3.67 (s, OCH₃, 3H), 2.85 (t, *J*= 7.6 Hz, CH=C-CH₂, 2H), 2.44-2.34 (m, 4H), 1.83 (quintet, 2H).

GC-MS (CI+, CH₄) *m/z* (% relative intensity, ion): 152 (100%), 245 (74%, MH⁺), 124 (34%), 180 (28%), 213 (22%, [M-OCH₃]⁺), 185 (14%, [M-C(=O)OCH₃]⁺).

HRMS-CI (*m*/*z*): MH⁺ calcd for C₁₁H₁₇O₆ 245.1025; found, 245.1023.

Sodium *trans*-homo₂-aconitate.

¹H NMR (400 MHz, D₂O+TSP, δ): 6.39 (s, CH=C, 1H), 2.26-2.15 (m, 4H), 1.63, (quintet, 2H).

Dimethyl 2-oxopimelate (dimethyl 2-oxoheptanedioate).

¹H NMR (400 MHz, CDCl₃+TMS, δ): 3.92 (s, OCH₃, 3H), 3.87 (s, OCH₃, 3H), 2.94 (t, *J*= 6.9 Hz, CH₂, 2H), 2.36-2.32 (m, 2H), 1.70-1.65 (m, 4H).

Trimethyl *cis*-homo₃-aconitate (trimethyl (1*Z*)-hex-1-ene-1,2,6-tricarboxylate). ¹H NMR (400 MHz, CDCl₃+TMS, δ): 5.84 (s, CH=C, 1H), 3.83 (s, OCH₃, 3H), 3.73 (s, OCH₃, 3H), 3.67 (s, OCH₃, 3H), 2.38 (t, *J*=6.9 Hz, 2H), 2.35 (t, *J*=7.3 Hz, 2H), 1.68 (quintet, 2H), 1.55 (quintet, 2H).

¹³C NMR (100 MHz, CDCl₃+TMS, δ): 173.7 (OC=O), 169.2 (OC=O), 165.3 (OC=O), 150.2 (C-2), 119.5 (C-1), 52.3 (OMe), 51.8 (OMe), 51.6 (OMe), 34.0 (CH₂), 33.6 (CH₂), 26.4 (CH₂), 24.1 (CH₂).

GC-MS (CI+, CH₄) m/z (% relative intensity, ion): 227 (100%, [M-OCH₃]⁺), 199 (51%, [M-C(=O)OCH₃]⁺), 287 (44%, [M+C₂H₅⁺]), 135 (23%), 195 (20%), 167 (12%), 299 (10%, [M+C₃H₅⁺]), 259 (6%, MH⁺).

HRMS-CI (*m*/*z*): MH⁺ calcd for C₁₂H₁₉O₆ 259.1182; found, 259.1180.

Trimethyl trans-homo3-aconitate (trimethyl (1E)-hex-1-ene-1,2,6-tricarboxylate).

¹H NMR (400 MHz, CDCl₃+TMS, δ): 6.76 (s, CH=C, 1H), 3.81 (s, OCH₃, 3H), 3.77 (s, OCH₃, 3H), 3.67 (s, OCH₃, 3H), 2.36-2.31 (m, 4H), 1.71-1.63 (m, 4H).

GC-MS (CI+, CH₄) m/z (% relative intensity, ion): 227 (100%, [M-OCH₃]⁺), 199 (78%, [M-C(=O)OCH₃]⁺), 287 (60%, [M+C₂H₅⁺]), 259 (50%, MH⁺), 135 (42%), 195 (30%), 167 (24%), 299 (10%, [M+C₃H₅⁺]).

HRMS-CI (*m*/*z*): MH⁺ calcd for C₁₂H₁₉O₆ 259.1182; found, 259.1179.

cis-Homo₃-aconitic acid (free acid).

¹H NMR (400 MHz, D₂O+TSP, δ): 5.94 (s, CH=C, 1H), 2.45-2.39 (m, 4H), 1.69-1.61 (m, 2H), 1.59-1.53 (m, 2H).

trans-Homo3-aconitic acid (free acid).

¹H NMR (400 MHz, D₂O+TSP, δ): 6.75 (s, CH=C, 1H), 2.46-2.38 (m, 4H), 1.68-1.58 (m, 2H), 1.56-1.48 (m, 2H).

Dimethyl 2-oxosuberate (dimethyl 2-oxooctanedioate).

¹H NMR (400 MHz, CDCl₃+TMS, δ): 3.92 (s, OCH₃, 3H), 3.87 (s, OCH₃, 3H), 2.86 (t, *J*= 7.4 Hz, 2H), 2.34-2.28 (m, 2H), 1.69-1.61 (m, 4H), 1.41-1.34 (m, 2H).

GC-MS (CI+, CH₄) *m/z* (% relative intensity, ion): 125 (100%), 217 (50%, MH⁺), 157 (42%, [M-C(=O)OCH₃]⁺), 185 (40%, [M-OCH₃]⁺), 245 (18%, [M+C₃H₅⁺]).

2-Oxosuberic acid (2-oxooctanedioic acid).

¹H NMR (400 MHz, D₂O+TSP adjusted to pD = 7 with sodium deuteroxide, δ): 2.76 (t, *J*=7.2 Hz, 2H), 2.45 (t, *J*=7.4 Hz, 2H), 1.58 (m, 4H), 1.34 (pentet, 2H).

¹³C NMR (100 MHz, D₂O+TSP adjusted to pD = 7 with sodium deuteroxide, δ): 208.0 (C-2), 182.7 (C-8), 171.1 (C-1), 39.2, 36.5, 28.3, 25.3, 22.7 (C-3 to C-7).

Trimethyl *cis*-homo₄-aconitate (trimethyl (1*Z*)-hept-1-ene-1,2,7-tricarboxylate).

¹H NMR (400 MHz, CDCl₃+TMS, δ): 5.82 (s, CH=C, 1H), 3.83 (s, OCH₃, 3H), 3.72 (s, OCH₃, 3H), 3.67 (s, OCH₃, 3H), 2.37 (t, *J*=7.1 Hz), 2.32 (t, *J*=7.4 Hz), 1.65 (quintet, 2H), 1.53 (quintet, 2H), 1.38 (m, 2H).

¹³C NMR (100 MHz, CDCl₃+TMS, δ): 173.9 (OC=O), 169.3 (OC=O), 165.4 (OC=O), 150.7 (C-2), 119.4 (C-1), 52.3 (OMe), 51.8 (OMe), 51.5 (OMe), 34.2 (CH₂) 33.9 (CH₂), 28.4 (CH₂), 26.7 (CH₂), 24.6 (CH₂).

GC-MS (CI+, CH₄) m/z (% relative intensity, ion): 241 (100%, [M-OCH₃]⁺), 213 (55%, [M-C(=O)OCH₃]⁺), 301 (50%, [M+C₂H₅⁺]), 149 (30%), 181 (15%), 209 (12%), 313 (10%, [M+C₃H₅⁺]), 273 (5%, MH⁺).

HRMS-CI (*m*/*z*): MH⁺ calcd for C₁₃H₂₁O₆ 273.1338; found, 273.1340.

cis-Homo₄-aconitic acid (free acid).

¹H NMR (400 MHz, D₂O+TSP, δ): 5.92 (s, CH=C, 1H), 2.39 (m, 4H), 1.62 (quintet, 2H), 1.53 (quintet, 2H), 1.37 (quintet, 2H).

(R)-Homocitrate.

LC-MS/MS (ESI-, CID): Fragmentation of the 205 m/z [M-H]⁻ molecular ion gave product ions with peaks at 187 m/z ([M-OH]⁻), 143 m/z ([M-OH-CO₂]⁻) and 125 m/z ([M-OH-CO₂-H₂O]⁻.

Supplementary Table 1: Oligodeoxyribonucleotide primers

Primer name	Sequence ¹
5MJ1596BN	GGT <u>GGATCCAT<i>ATG</i>ATGAAGGTGTGTG</u>
3MJ1596B	GGTGGATCCTCAATATCCCTTTAACTTC

¹ Restriction sites are underlined and the initiator codon is shown in italics.

Strain or plasmid	Description	Reference or
	xx / 1 1 .	source
Methanocaldoccus jannaschii	Wild-type	DSM 2661
JAL-I		
Escherichia coli		
DH5a	General cloning host	Invitrogen
BL21 (DE3)	Protein expression host	Novagen
ArcticExpress (DE3)-RIL	Host for low-temperature protein expression	Stratagene
	with chaperones	
Plasmids		
pET-19b	Expression vector for proteins with an N-	Novagen
-	terminal decahistidine tag	-
pET-43.1c	Expression vector for proteins with an N-	Novagen
	terminal NusA fusion and hexahistidine tag	C
pDG141	MJ1003 cloned into NdeI/KpnI sites of pCDF-	(1)
	Duet1	
pDG160	MJ1271 cloned into NcoI/BamHI sites of	(1)
1	pET-19b	
pDG162	MJ1277 cloned into NcoI/BamHI sites of	(1)
1	pET-19b	
pDG130	MJ1596 PCR product obtained using primers	This study
1	5MJ1596BN and 3MJ1596B cloned into	,
	BamHI site of pET-43.1c.	
pDG131	pDG130 with the 1659 bp NdeI fragment	This study
r	deleted.	
pDG382	MJ1596 PCR producted cloned into	This study
1	Ndel/BamHI sites of pET-19b	······
pT7-MJ1596	MJ1596 cloned in expression vector pT7-7	(2)

Supplementary Table 2: List of plasmids and microorganisms

Phylogenetic analysis of archaeal small-subunit hydro-lyase homologs

An alignment of 34 homologs of the small IPMI subunit was prepared using the T-Coffee program (ver. 5.57) (3). From the full alignment 164 positions that were deemed to be confidently aligned were chosen for phylogenetic analysis. The phylogeny was inferred using the proml program or the protdist and neighbor programs (with 100 bootstrap replicates) from the Phylip package (ver. 3.66) (4). Both programs used the Jones-Taylor-Thornton model of amino acid changes and assumed a γ -distribution of rates (α =2.4) approximated by three states.

Sequences of small subunit homologs (and their RefSeq accession numbers) were from Archaeoglobus fulgidus (NP 070589.1 and NP 069463.1), Caldivirga maquilingensis (YP_001540990.1), Metallosphaera sedula (YP_001190928.1), Candidatus Methanoregula boonei (YP 001403761.1 and YP 001405233.1), Methanobrevibacter smithii (YP 001273420.1 and YP 001273872.1), Methanocaldococcus jannaschii (NP 248267.1 and NP 248273.1), Methanococcoides burtonii (YP_566232.1 and YP_566284.1) Methanococcus maripaludis (NP 987501.1 and NP 987256.1), Methanococcus vannielii (YP 001323877.1 and YP 001323653.1), Methanocorpusculum labreanum (YP 001029677.1 and YP 001030049.1), Methanosaeta thermophila (ZP 01153511.1 and ZP 01153233.1), Methanosarcina acetivorans (NP 618624.1, NP 616162.1 and NP 615175.1), Methanosphaera stadtmanae (YP 447420.1 and YP 448498.1), Methanospirillum hungatei (YP_503239.1and YP_503785.1), Methanothermobacter thermautotrophicus (NP 275966.1 and NP 276503.1), Pyrobaculum aerophilum (NP 559684.1), Pvrococcus furiosus (NP 579409.1 and NP 578668.1), Sulfolobus solfataricus (NP 343817.1), Thermococcus kodakarensis (YP 182694.1). For each genome with multiple paralogs, the predicted HACN subunit accession number is listed first, followed by the IPMI subunit.

References for Supplementary Materials

- 1. Drevland, R. M., Waheed, A., and Graham, D. E. (2007) J. Bacteriol. 189, 4391-4400
- 2. Howell, D. M., Graupner, M., Xu, H., and White, R. H. (2000) *J. Bacteriol.* **182**, 5013-5016
- 3. Notredame, C., Higgins, D. G., and Heringa, J. (2000) J. Mol. Biol. 302, 205-217
- 4. Felsenstein, J. (2005) PHYLIP (phylogeny inference package). 3.67 Ed., Department of Genetics, University of Washington, Seattle