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S1 Covariance of various test statistics

Weighted haplotype test

Suppose we randomly permute the dataset and apply the weighted haplotype test [1, 2], which can
be considered a type of imputation statistic. Assume we have N/2 cases and N/2 controls (total 2N
chromosomes). Consider a ungenotyped marker i. By using nearby genotyped markers, we define k

haplotypes. Let ph be the frequency of the haplotype h in the overall sample, which is constant regardless
of the permutation. Let p̂+

h and p̂−h be the observed frequency of the haplotype h in the permuted cases
and controls respectively. Let qih be the conditional probability observing the minor allele at marker i
given the haplotype h. qih can be estimated from the reference dataset, and is invariant between cases
and controls under the null. Then, the test statistic at ungenotyped marker i is

Si =

√
2N − 1

4

∑k
h=1 qih(p̂+

h − p̂
−
h )√∑

h q
2
ihph − (

∑
h qihph)2

∼ N (0, 1) .

Si differs from the statistic of Zaitlen et al. [1] or Nicolae [2] by a factor of
√

2N−1
2N due to the without-

replacement sampling of the permutation test.
Now we consider the covariance between statistics Si at ungenotyped marker i and Sj at ungenotyped

marker j. The covariance between a genotyped marker and a ungenotyped marker can be straightfor-
wardly derived, because a genotyped marker can always be considered as a ungenotyped marker with a
nearby haplotype of size 1 which is the marker itself. Let h be the one of k nearby haplotypes defined
for marker i and h′ be the one of k′ nearby haplotypes defined for marker j. Let phh′ be the frequency
of the overall sample chromosomes which have both haplotype h and haplotype h′. Let p̂+

hh′ and p̂−hh′ be
the observed frequencies in the cases and controls after random permutation. Similarly to the derivation
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in the main text,

Cov
(
p̂+
h , p̂

+
h′

)
=

1
2N − 1

(phh′ − phph′)

Cov
(
p̂+
h − p̂

−
h , p̂

+
h′ − p̂

−
h′

)
= Cov

(
p̂+
h − (2ph − p̂+

h ), p̂+
h′ − (2ph′ − p̂+

h′)
)

= Cov
(
2p̂+
h − 2ph, 2p̂+

h′ − 2ph′
)

= Cov
(
2p̂+
h , 2p̂

+
h′

)
= 4Cov

(
p̂+
h , p̂

+
h′

)
=

4
2N − 1

(phh′ − phph′)

Thus,

Cov (Si, Sj) =
∑k
h=1

∑k′

h′=1 qihqjh′ (phh′ − phph′)√
(
∑
h q

2
ihph − (

∑
h qihph)2)

(∑
h′ q

2
jh′ph′ − (

∑
h′ qjh′ph′)2

)
Test for imputed genotypes based on posterior probabilities

A different type of imputation statistic is the test for imputed genotypes based on the posterior prob-
abilities. Since many imputation softwares [3] provide the posterior probabilities for genotypes, we will
consider the genotypic test instead of the allelic test. We derive the covariance by using the score statistic.

Unambiguous genotypes If the genotypes are unambiguous, the standard score test can be used
as in Seaman and Müller-Myhsok [4]. Assume N/2 cases and N/2 controls. Let Yi be the binary trait
of individual i. Let Zi ∈ {0, 1, 2}M be the vector of M marker genotypes of individual i. Let α be the
intercept term, and let β be the vector of coefficients describing the effect of the genotypes on the trait.
Under the logistic regression model such that

P (Yi = 1|Zi, α, β) = Ỹi =
eα+βZi

1 + eα+βZi
,

the likelihood of θ = (α, β) is

L(θ) =
N∏
i=1

exp
(
Yiηi − ln

(
1 + exp(ηi)

))
,

where ηi = α+ βZi.
The score and the information matrix are

U(θ) =
N∑
i=1

(Yi − Ỹi)(1 ZTi )T

I(θ) =
N∑
i=1

Ỹi(1− Ỹi)(1 ZTi )T (1 ZTi ) .
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Let α̂0 be the maximum likelihood estimate of α under the null hypothesis of β = β0 = 0, which is zero
for this balanced case/control study. The score and the information matrix for the genetic markers are
obtained by correcting for the intercept term and apply θ0 = (α̂0, β0) = (0, 0),

Uβ = U(θ0)β

Iβ = I(θ0)ββ − I(θ0)βαI(θ0)−1
ααI(θ0)αβ .

The score test statistic UTβ I
−1
β Uβ asymptotically follows a χ2

df=M distribution. The test statistic at marker
j, Sj = Uβ(j)√

Iβ(j,j)
∼ N (0, 1) is equivalent to the Cochran-Armitage trend test statistic. The covariance

between two statistics Sj and Sk is Iβ(j,k)√
Iβ(j,j)Iβ(k,k)

, which is the Pearson correlation coefficient r.

Ambiguous genotypes (imputation) If the genotypes are ambiguous and only the posterior prob-
abilities are given, we should take into account the uncertainty in the score statistic as in Marchini et
al. [3] and Schaid et al. [5]. Let Ep[·] be the expectation over the posterior distribution.

As described in Louis [6], the score and the information matrix with missing data are

U∗(θ) =
N∑
i=1

(Yi − Ỹi)(1 Ep[ZTi ])T

I∗(θ) =
N∑
i=1

Ep[I]−
N∑
i=1

(
Ep[UUT ]− Ep[U ]Ep[UT ]

)
where U and I are the score and information when we assume the data are complete. The first term,
Ep[I], is the variance of assuming a complete dataset, and the second term is the penalty of having
uncertainty in the data.

I∗(θ) =
N∑
i=1

Ỹi(1− Ỹi)Ep
[
(1 ZTi )T (1 ZTi )

]
−

N∑
i=1

(Yi − Ỹi)2
(
Ep
[
(1 ZTi )T (1 ZTi )

]
− Ep

[
(1 ZTi )T

]
Ep
[
(1 ZTi )

] )
I∗(θ)αα =

N∑
i=1

Ỹi(1− Ỹi)

I∗(θ)αβ =
N∑
i=1

Ỹi(1− Ỹi)Ep[Zi]

I∗(θ)ββ =
N∑
i=1

Ỹi(1− Ỹi)Ep
[
ZiZ

T
i

]
−

N∑
i=1

(Yi − Ỹi)2
(
Ep
[
ZiZ

T
i

]
− Ep [Zi] Ep

[
ZTi
])
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Under the null, for this balanced case/control study, α̂0 = 0 and Ỹi = 1
2 . Thus,

I∗(θ0)αα =
1
2
· 1

2
·N =

N

4

I∗(θ0)αβ =
1
4

N∑
i=1

Ep[Zi]

I∗(θ0)ββ =
1
4

N∑
i=1

Ep
[
ZiZ

T
i

]
−

N∑
i=1

(
Yi −

1
2

)2 (
Ep
[
ZiZ

T
i

]
− Ep [Zi] Ep

[
ZTi
])

U∗β = U∗(θ0)β =
N∑
i=1

(
Yi −

1
2

)
Ep[Zi]

I∗β = I∗(θ0)ββ − I∗(θ0)βαI∗(θ0)−1
ααI

∗(θ0)αβ

=
1
4

(
N∑
i=1

Ep
[
ZiZ

T
i

]
−
∑N
i=1 Ep[Zi]

∑N
i=1 Ep[ZTi ]

N

)

−
N∑
i=1

(
Yi −

1
2

)2 (
Ep
[
ZiZ

T
i

]
− Ep [Zi] Ep

[
ZTi
] )

The score test statistic is U∗Tβ I
∗−1
β U∗β .

For the single marker test, if we denote the genotype at marker j of individual i as Zi(j), the statistic
for marker j

Sj =
U∗β(j)√
I∗β(j,j)

=
∑N
i=1(Yi − 1

2 )Ep[Zi(j)]√
1
4

(∑N
i=1 Ep

[
Z2
i(j)

]
− (

PN
i=1 Ep[Zi(j)])2

N

)
−
∑N
i=1

(
Yi − 1

2

)2 (Ep
[
Z2
i(j)

]
− Ep

[
Zi(j)

]2 )
follows the standard normal distribution. The covariance between Sj and Sk is given by

I∗β(j,k)√
I∗
β(j,j)I

∗
β(k,k)

,

where

I∗β(j,k) =
1
4

(
N∑
i=1

Ep
[
Zi(j)Zi(k)

]
−

(
∑N
i=1 Ep[Zi(j)])(

∑N
i=1 Ep[Zi(k)])

N

)

−
N∑
i=1

(
Yi −

1
2

)2 (
Ep
[
Zi(j)Zi(k)

]
− Ep

[
Zi(j)

]
Ep
[
Zi(k)

] )
I∗β(j,j) =

1
4

(
N∑
i=1

Ep
[
Z2
i(j)

]
−

(
∑N
i=1 Ep[Zi(j)])2

N

)
−

N∑
i=1

(
Yi −

1
2

)2 (
Ep
[
Z2
i(j)

]
− Ep

[
Zi(j)

]2 )
I∗β(k,k) =

1
4

(
N∑
i=1

Ep
[
Z2
i(k)

]
−

(
∑N
i=1 Ep[Zi(k)])2

N

)
−

N∑
i=1

(
Yi −

1
2

)2 (
Ep
[
Z2
i(k)

]
− Ep

[
Zi(k)

]2 )
.
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For this balanced case/control study, since
(
Yi − 1

2

)2 = 1
4 , the formula simplifies to

Cov (Sj , Sk) =
∑N
i=1 Ep

[
Zi(j)

]
Ep
[
Zi(k)

]
− (
∑N
i=1 Ep[Zi(j)])(

∑N
i=1 Ep[Zi(k)])/N√(∑N

i=1 Ep
[
Zi(j)

]2 − (
∑N
i=1 Ep[Zi(j)])2/N

)(∑N
i=1 Ep

[
Zi(k)

]2 − (
∑N
i=1 Ep[Zi(k)])2/N

)
Thus, the covariance is computable from the posterior probabilities.

However, if the study is unbalanced, computing covariance requires the knowledge of the joint posterior
probabilities between markers (Ep

[
Zi(j)Zi(k)

]
). To the best of our knowledge, no current imputation

software provides the joint distribution. We assume that an algorithm can be developed to provide the
joint distribution for a given window size W , however this will be beyond the scope of this paper.

S2 Details of sliding-window procedure in SLIDE

SLIDE approximates the MVN by using a sliding-window Monte-Carlo approach. Given M markers, let
(S1, · · · , SM ) be the vector of statistics which asymptotically follows a M -dimensional MVN with zero
mean and variance Σ. Let f(S1, S2, · · · , SM ) be the probability density function of the statistics. Under
the local LD assumption, statistics at distant markers are uncorrelated. Thus, given a window size w,
we can assume that Si is conditionally independent of S1, S2, · · · , Si−w−1 given Si−w, Si−w+1, · · · , Si−1.
Then by the chain rule,

f(S1, S2, · · · , SM ) = f(S1)f(S2|S1)f(S3|S1, S2) · · · f(SM−1|SM−w−1, · · · , SM−2)f(SM |SM−w, · · · , SM−1) .

Using this equation, the following procedure samples a single M -dimensional random sample vector,
based on the standard formula for conditional mean and variance in the MVN.

1. Sample Ŝ1 from N(0, 1)

2. i← 1

3. s← max(i− w, 1), Ŝsi ← (Ŝs, Ŝs+1, · · · , Ŝi).

4. Let Σsi,si be a sub-matrix of Σ from index s to index i in both rows and columns, and let vsi,(i+1)

be the sub-column vector of Σ with row index s to i, and column index i+ 1.

5. Let µ← vTsi,(i+1)Σ
−1
si,siŜsi, σ

2 ← 1− vTsi,(i+1)Σ
−1
si,sivsi,(i+1), and sample Ŝi+1 from N(µ, σ2).

6. i← i+ 1 and repeat from step 3 while i < M

We repeat this procedure to draw R sample vectors. Let Ŝji be the sample statistic for marker i in the
j’th sample vector. The set of statistics {Ŝji } approximates the MVN. At step 5, we can reduce the
computational overhead of repeatedly drawing random sample vectors by storing vTsi,(i+)V

−1
si,si and σ2 for

each marker.
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S3 Conditional probabilities in cases and controls

Let c denote the causal SNP, A denote the marker, and + denote the diseased status. We show that the
conditional probability, PA|c, does not depend on the disease status and thus is invariant among case,
control, and overall populations.

P+
A|c = P (A|c,+)

=
P (A, c|+)
P (c|+)

By Bayes’ rule,

=
P (+|A, c)P (A, c)

P (+|A, c)P (A, c) + P (+|A,C)P (A,C) + P (+|a, c)P (a, c) + P (+|a,C)P (a,C)
· 1
P (c|+)

Since A does not affect the disease status given c,

=
P (+|c)P (A, c)

P (+|c)P (A, c) + P (+|C)P (A,C) + P (+|c)P (a, c) + P (+|C)P (a,C)
· 1
P (c|+)

=
P (+|c)P (A, c)

P (+|c)P (c) + P (+|C)P (C)
· 1
P (c|+)

=
P (+|c)P (c)

P (+|c)P (c) + P (+|C)P (C)
· P (A, c)
P (c)

· 1
P (c|+)

= P (c|+) · P (A, c)
P (c)

· 1
P (c|+)

=
P (A, c)
P (c)

= PA|c

The result goes along with our intuition; since the causal SNP is the only factor which causes the difference
in haplotype distribution between cases and controls, once the causal SNP is conditioned, there is no more
difference in haplotype distribution between cases and controls.

S4 P-value correction in Chromosome 22 of WTCCC data: geno-

type data and unbalanced study

In the main text of our article, we perform the p-value correction simulation using the chromosome 22
of the WTCCC dataset. We perform the same experiment, but instead of using the phased haplotype
data assuming a balanced case/control study, we use the unphased genotype data assuming a unbalanced
case/control study. We split the data into 2,934 controls and 1,928 cases. We correct ten different
pointwise p-values using the permutation test, the Bonferroni correction, Keffective, and SLIDE. All
other settings are the same as the simulation in the main text. Figure S2 shows that the average error
rate of SLIDE is only 2%, while the error rate of the Bonferroni correction and Keffective are 67% and
16% respectively.
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S5 Use of an allelic test for genotype data in multiple testing

correction

Theory

We show that, given unphased genotype data, using an allelic test statistic can result in inaccurate
multiple testing correction. Under the additive disease model, the natural choice of test statistic for
unphased genotype data is the genotypic (Armitage’s trend) test statistic. Allelic (χ2) test can only be
used if the SNP follows the exact expected frequencies of HWE (Hardy Weinberg proportions, or HWP).
Unless, Sasieni [7] showed that the allelic test may be biased.

Specifically, if the number of genotypes in cases and controls at a SNP are given as follows,

# of minor allele 0 1 2

Case r0 r1 r2 R

Control s0 s1 s2 S

n0 n1 n2 N

the allelic test statistic is

S2
H =

2N{2N(r1 + 2r2)− 2R(n1 + 2n2)}2

(2R)(2S){2N(n1 + 2n2)− (n1 + 2n2)2}
,

and the genotypic test statistic is

S2
G =

N{N(r1 + 2r2)−R(n1 + 2n2)}2

RS{N(n1 + 4n2)− (n1 + 2n2)2}
.

While the numerators of the two statistics are identical, the variances (denominators) differ. Devlin and
Roeder [8] showed that

ρ2 =
S2
H

S2
G

= 1 +
4n0n2 − n2

1

(n1 + 2n2)(n1 + 2n0)
.

Thus, if the SNP does not follow HWP (n2
1 6= 4n0n2), the variance of SG is 1 while the variance of SH

is ρ, which can be greater than or less than 1. This non-unit variance is caused by the fact that the
cell count in the allelic 2× 2 contingency table does not follow the hypergeometric distribution. For this
reason, Sasieni [7] recommends against the use of allelic test for unphased genotype data.

For estimating pointwise p-value, however, widely used software such as PLINK [9] allows the use
of allelic test for genotype data, because the use of permutation test or exact test provides a kind of
protection for this deviation. Since the permutation test is only concerned about relative comparisons
between statistics, as long as all statistics are scaled with a constant factor (ρ), the result is the same.
Thus, the allelic test statistic may be safely used for unphased genotype data for estimating pointwise
p-values.

Nevertheless, for estimating corrected p-values, the permutation test does not provide this kind of
protection. When estimating pointwise p-value, we consider each SNP separately. For each single SNP,
the ratio ρ is constant because n0, n1, and n2 are fixed. Thus, we always have the relationship of
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SH = ρSG. That is, the relative order between the statistics obtained by multiple permutations is the
same for the genotypic test and the allelic test. On the other hand, for estimating corrected p-values, we
consider each SNP simultaneously. Permutation can be thought of as a procedure selecting the maximum
statistic max(SH) or max(SG) among all markers at each permutation. Every SNP typically has a
different ρ, because n0, n1, and n2 vary between SNPs. Therefore, max(SH) and max(SG) do not have
such a relationship as SH = ρSG. That is, the relative order between the statistics obtained by multiple
permutations may not be the same for the genotypic test and the allelic test. In the perspective of the
MVN, while SG follows the standard MVN whose variances are all 1 for every coordinate, SH follows a
“squeezed” MVN whose variances vary by each coordinate. Thus, the outside-rectangle probability of
the MVN, which is considered an approximation of the corrected p-value, will be different from what
we expect for this squeezed MVN. In other words, it may be difficult to accurately correct for multiple
testing if we use the allelic test for unphased genotype data, even if we use the permutation test.

In fact, this error occurs because we are using the max-T style permutation which selects maximum
statistic at each permutation. The goal is to identify the most significant result among all markers at
each permutation. We can identify the most significant marker by performing min-P style permutation
which involves performing an additional permutation to estimate each pointwise p-value. Min-P per-
mutation is able to identify the most significant pointwise p-value even if the distribution of statistic is
not identical among the markers. The use of an allelic test for genotype data makes the distribution
of statistic not identical between markers by changing the variance of the normal distribution. Thus,
the maximum statistic (under max-T) sometimes does not coincide with the most significant pointwise
p-value. Nevertheless, the use of min-P permutation requires much more computational time than max-T

permutation, which is impractical for large datasets.

Simulation

We first use the unphased genotype data of the WTCCC T2D case/control chromosome 22 dataset (∼ 5K
SNPs over 4,862 individuals). We perform the permutation test using two different test statistics: allelic
test statistic and genotypic test statistic. We do not observe a large difference in corrected p-values
between the two approaches. This is possibly because the deviation from the HWE is not very large,
with an average |FST | of .012.

We then construct a smaller dataset. We use 5,261 SNPs in the chromosome 22, but instead of using
the WTCCC data, we construct a simulated dataset from the 60 parental individuals in the HapMap
CEU population data. We copy the genotypes of individuals two times each to get 120 cases and 120
controls. This duplication procedure simulates Hardy-Weinberg disequilibrium by violating the random
mating assumption. The average |FST | of this dataset is as high as .103.

Then we simulate two different levels of quality control (QC). We perform χ2 test for HWE for each
SNP. In one experiment, we exclude 272 SNPs with HWE p < .0001 leaving 4,989 SNPs. In another
experiment, we exclude 1,479 SNPs with HWE p < .05 leaving 3,782 SNPs. The average |FST | of the
two datasets are still high as .090 and .059. This is because passing the HWE test does not always mean
that the SNP follows HWP.
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Then we perform the permutation test using the genotypic test and the permutation test using the
allelic test. We consider the p-values obtained by the permutation test using the genotypic test as the
gold standard and plot the ratio between the gold standard and the p-values obtained by the permutation
test using the allelic test, for each dataset of no QC, QC p<.0001, and QC p<.05. Figure S3 shows that
using the allelic test for the unphased genotype data can result in inaccurate corrected p-values even
closer to the Bonferroni correction than to the gold standard. After QC, the error is reduced, but a
considerable amount of error still remains.

In this experiment, the use of allelic test results in conservative estimates. This can happen if, for
example, the genotype calling error rate is much higher for the heterozygous allele than for the homozygous
allele. However, the direction of the error can also be anti-conservative.

Although our simulation is unrealistic, it shows that the use of allelic test for unphased genotype data
can result in inaccurate multiple testing correction, even after QC excluding SNPs which do not follow
HWE. Our experiment using the WTCCC data shows that a large study with thousands of individuals
is not much affected by this error, possibly because SNPs approximately follow HWP, but a study with
hundreds of subjects can be affected. A simple solution to avoid this error is, given unphased genotype
data, to use a genotypic test to obtain both pointwise p-values and corrected p-values and an allelic test
to obtain pointwise p-values but not the corrected p-values until the data is phased. Another solution is
to perform a min-P style permutation, but this will take a large amount of computational time.
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