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1 Supplemental analyses relating age at onset of dis-

ease to number of octarepeats (OR)

In addition to the analysis of variance and regression results presented in the main paper,
we performed two additional analyses examining how age at disease onset is related to the
number of octarepeats (OR). In the first of these analyses, we used a frequentist nonlinear
regression method to characterize the mean age as a function of OR number; the second
analysis fitted a Bayesian change-point model to the same relationship.

Table 1 (Supplement) gives a descriptive summary of onset age at each observed level of
OR number, and Figure 1 (Supplement) presents a scatterplot of age versus OR number,
with a cubic regression fit (corresponding to one of the analyses in the main paper), a
nonparametric smooth — based on the lowess function (Cleveland, 1979) in the statistical
analysis environment R (R Development Core Team, 2003) — and a constant model (at the
mean age of 40.2 years) superimposed. This graph is highly suggestive of a strong non-
constant relationship between the two variables, in which — as the number of octarepeats
increases — the mean onset age at first declines and then rises again. This can be confirmed
by bootstrapping (e.g., Efron and Tibshirani, 1993) the lowess function, as in Figure 2
(Supplement); the vertical envelope of dotted lines in the figure for any OR number provides
an approximate 99% nonparametric interval estimate for the median age at onset for that
OR number. It is clear that the underlying relationship in the population of individuals
similar to those in our study is non-constant.

The problem of testing for a difference in the onset age among individuals with different
numbers of octarepeats can also be tackled using a model that assumes that the onset age
is a piecewise-constant function of the OR number, possibly with one single change-point
after an undetermined number of repeats. As an alternative analysis we also fit this model,
commonly known as a single change-point model, using Bayesian methods (e.g., Robert,
2007), which require the elicitation of prior distributions that, combined with the information
in the data, produce posterior probability distributions upon which inference is based.
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Table 1: A descriptive summary of onset age at each observed level of OR number.

Onset Age (Years)
Standard

OR Number Mean Deviation Frequency

1 65.0 7.5 3
2 60.0 1.4 2
3 68.5 0.7 2
4 64.2 10.7 5
5 46.9 10.0 15
6 33.6 9.8 45
7 30.9 6.2 9
8 38.8 10.0 24
9 46.7 12.7 3

Overall 40.2 13.6 108
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Figure 1: Age at onset as a function of number of repeats, with a cubic regression fit (blue
dotted curve) and a nonparametric smooth (red solid curve) superimposed; the constant model
(at the mean age) is given (black short dotted line) for comparison.

In brief, our model assumed that the patients are divided in up to two groups (above and
below an unknown number of repeats) and that the onset ages within each group follow a
Normal distribution with unknown parameters. With 9 observed OR number values in our
data set, testing for differences and identifying the unknown change-point effectively reduced
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Figure 2: Scatterplot as in Figure 1 (Supplement), with 1,000 bootstrap lowess curves su-
perimposed.

to comparing 9 models: the model that assumes no change point in the data (to which we
assigned a prior probability of 1

2
, and the 8 models corresponding to a change-point after each

OR number (each of which was given a prior probability of 1

16
, which means that, a priori, we

think that a change point has the same probability of occurring after any number of repeats).
For the other unknown parameters in the model (the mean and variance of each group) we
employ conjugate Normal-Inverse-Gamma priors, with parameters chosen to reflect historical
information from previous studies. The priors we used in this analysis implied that the
average onset age has a mean of 50 years, and that we expect it to be between 0 and 100
years with roughly 95% probability. We further assumed that the standard deviation of the
onset age within each group is around 12 years and has a 95% probability of being below 25
years.

With these conjugate priors, closed-form expressions for the posterior probabilities of the 9
models involved can readily be obtained, allowing us to avoid Monte Carlo integration (the
calculations are straightforward and are therefore omitted). The posterior probability (given
the data) for the model with no change point was 1.3·10−12, which provides decisive evidence
against a model in which onset age does not depend on OR number. (The fact that this
probability is so small also makes it clear that even dramatic changes, for sensitivity analysis
purposes, in the prior probabilities for the no-change-point and one-change-point models
would have no effect on this conclusion.) In terms of the location of the change-point, there
was decisive evidence of a change in the average onset age after either 4 or 5 repeats, but
the exact location of the change-point was not completely clear: the posterior probability
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Table 2: A descriptive summary of disease duration at each observed level of OR number.

Disease Duration (Years)
Standard

OR Number Mean Deviation Frequency

1 0.4 0.1 3
2 7.0 0.0 1
3 1.7 1.9 2
4 1.2 1.8 4
5 5.3 4.9 11
6 7.4 4.1 32
7 10.9 4.3 8
8 3.4 3.1 18
9 2.3 0.4 2

Overall 5.7 4.6 81

for a change between 4 and 5 repeats was 0.72, while the probability of a change between 5
and 6 repeats was 0.27 (all other locations for the change point had posterior probabilities of
less than 10−6). Sensitivity analysis showed that, overall, these results were fairly robust to
moderate changes in the prior distribution; for example, a prior mean for the average onset
age of around 40 years roughly evened out the posterior probabilities of the change-points
at 4/5 or 5/6. These results are broadly consistent with those we described in the main text
of the paper and with the results presented earlier in this section.

2 Supplemental analyses relating duration of disease

to OR number

We also performed additional analyses examining the relationship between disease duration
and octarepeat number. Table 2 (Supplement) presents a descriptive summary of disease du-
ration at each observed level of OR number; disease duration was heavily positively skewed,
suggesting a logarithmic transformation. The top panel in Figure 3 (Supplement) gives a
scatterplot of the logarithm of disease duration as a function of number of repeats, with a
cubic regression fit (corresponding to one of the analyses in the main paper) and a nonpara-
metric smooth (red solid curve) superimposed, and with a constant model at the mean log
duration (1.3) for comparison. Once again it is evident that the relationship is strongly non-
constant; once again, to confirm this the lowess nonparametric smooth can be bootstrapped,
as in the bottom panel in Figure 3 (Supplement). Here there is more vertical uncertainty
than in Figure 2 (Supplement), but significant departures from a constant model are again
evident.

As noted in the main text, we used an ANOVA of log(duration) on OR number, followed by
multiple-comparison-adjusted pairwise comparisons of means, to find statistically significant
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Figure 3: Top panel: Logarithm of disease duration as a function of number of repeats,
with a cubic regression fit (blue long dotted curve) and a nonparametric smooth (red solid
curve) superimposed; the constant model (at the mean log duration) is given (black short
dotted line) for comparison. Bottom panel: Scatterplot as in top panel, with 1,000 bootstrap
lowess curves superimposed.
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Table 3: Summary of all significant pairwise comparisons with log(duration) as the outcome
and OR number as a categorical predictor.

Moving from 1 to 5 repeats, disease duration goes up.
1 6 up.
1 7 up.
3 7 up.
4 6 up.
4 7 up.
6 8 down.
7 8 down.

differences in the relationship between disease duration and number of octarepeats. We con-
clude with a summary, in Table 3 (Supplement), of the pairwise differences found significant
at the 0.05 level by the Tukey-Kramer HSD method.
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