



24°C



|     | WT        | ۲         | ۲ | *   | ٠  | •   | •       | 0  |            | 2                            |     | • | •    | ۲        | *      | •  | •  | •    | ٠           |    | *   |             |
|-----|-----------|-----------|---|-----|----|-----|---------|----|------------|------------------------------|-----|---|------|----------|--------|----|----|------|-------------|----|-----|-------------|
| Α   | erg2∆     | 0         | ٠ | 4   | *  | •   | •       | ٠  | -          |                              |     | ٠ |      |          |        |    | ٠  | ٠    | *           | ÷  |     | Temperature |
|     | erg3∆     | •         | ۲ | *   | Ń  |     | •       | •  | *          | *                            | ••. | • |      | *        | *      |    | •  | ٠    | *           |    |     | and carbon  |
|     | erg4∆     | •         | ۲ | *   | ٠  | •   | •       | •  |            | *                            |     | • | ۲    |          |        |    | •  |      |             |    |     | source      |
|     | erg5∆     | ۲         | ۲ | ×   | ٠  | ••  | 0       | 0  | -          | -                            | ••  | 0 | ٠    | *        |        |    | •  | ٠    | *           | 75 |     | 000100      |
|     | erg6∆     | •         | • | ٠   | a  | *   | 0       | 0  | *          | *                            |     | • |      | *        |        |    | •  | •    |             | \$ |     |             |
|     | isc1∆     | •         | ۲ | 2   | *  | ·   | •       | •  | *          | +.                           | 4.  | ٠ | ٠    | 4        |        |    | •  | ٠    |             |    | •   |             |
| isc | :1∆ erg2∆ | •         | ۲ | *   | f  | •   |         | ۲  | *          | <i>s</i> ::                  |     | ۹ |      |          |        |    | ٠  | ٠    | 床           |    |     | ←           |
| isc | :1∆ erg3∆ | ۲         | 0 | *   | *  | :   | •       | •  | -#         |                              |     | 0 | ۲    | *        | 4      |    | •  | ٠    |             | •. |     | ←           |
| isc | :1∆ erg4∆ | •         | ۲ | ø   | *  | *   | •       | ٠  |            | -85                          |     | 0 | ۲    | -        | ŵ.     |    | •  |      | 1           |    |     |             |
| isc | :1∆ erg5∆ | $\bullet$ | ۲ | *   | \$ |     | •       | ٠  | ¥          | *                            |     | • | -    | *        | ,      |    |    |      |             |    |     | ←           |
| isc | :1∆ erg6∆ | •         | ۲ | *   | #  | s.  | •       | ٠  | ¥:         | .;                           |     | • |      | *        |        |    |    | -    |             |    |     | <b>—</b>    |
|     | sur2∆     | •         | 0 |     | Ŷ. | 4   | •       | •  |            | *                            |     | ۲ | ۲    | -        | -27    | •. | •  | •    | ٠           |    | ÷   |             |
| sui | r2∆ erg2∆ | •         | • |     | *  | •   | •       | •  |            | ÷                            |     | • | ۲    |          | 1.2    |    | •  | ٠    | *           | #1 |     | ←           |
| su  | r2∆ erg3∆ | ۲         | ۲ | 9   | 3  | ÷.• | •       | •  | ۲          | *                            | •.• | • | ۲    | ۲        | *      | •  | •  |      | æ           |    |     |             |
| sui | r2∆ erg4∆ | •         | ۲ | ۲   | ø  | *   | 0       | 0  |            | 1                            |     | • | ۲    | Ф        | *      |    | •  |      | -           |    |     |             |
| su  | r2∆ erg5∆ | •         | 0 |     | 2  | ۰.  | •       | •  | 0          | 55                           |     | 0 | ۲    | 4        | \$25   |    | •  | •    |             | *  |     |             |
| su  | r2∆ erg6∆ | $\bullet$ | 0 | ۲   | ø  | *   | •       | ۲  | -          | 六                            |     |   | •    | *        |        |    |    |      | 13          |    |     | <b>4</b>    |
|     | scs7∆     | •         | ٢ | ۲   | *  | •   | •       | ۲  |            | -14                          | •   | ٢ | ٠    |          | 21     | •  | Ō  | •    | ٠           | ·æ | ÷   |             |
| scs | s7∆ erg2∆ | •         | ۲ | ۲   | 4  | ••  | •       | ۲  | *          | 2                            |     | 0 |      | -        | 3.     |    | •  |      | *           | ¥  |     | ←           |
| sc  | s7∆ erg3∆ | •         | 0 | ۲   | f  | *   | •       | •  | *          | *                            | `   | • |      | -        | ;      | 4. | •  | •    | *           | •  |     |             |
| sc  | s7∆ erg4∆ | ۲         | ۲ | ٠   | •  | •   | •       | ۲  | ٠          | *                            | ••• | • |      | -        | 4.     |    | •  |      | *           |    |     |             |
| scs | s7∆ erg5∆ | •         |   | ٠   | ÷  |     | •       | •  | \$         | **                           |     | • | ۲    | *        | \$     |    |    |      | *           | *  | ••• |             |
| scs | s7∆ erg6∆ | $\bullet$ | • | ٠   | *  | Ł   | •       | ۲  | -          | - CAL                        |     | 0 |      | *        |        | :  |    |      |             | 47 |     | <b>4</b>    |
| erg | g2∆ erg3∆ | •         | ۲ | ŧ   | 2. | •   | •       | ۲  | \$         | $\overline{P}_{g,2}^{m,\mu}$ |     | ۲ | - 30 |          |        |    | •  | de ' |             |    |     |             |
| erg | g2∆ erg4∆ | •         | • |     | *  | -15 | •       | •  | *          | ۶,                           |     | ۲ | 9    | ÷        |        |    | •  |      |             |    |     |             |
| erg | g2∆ erg5∆ | $\bullet$ | ۲ | *   | ٠  | •   | $\circ$ | ۲  | \$         | *                            |     | • | ٠    | đ        | ÷      |    | •  | *    |             |    |     |             |
| erg | g2∆ erg6∆ | 4         |   |     |    |     |         |    |            |                              |     |   |      |          |        |    |    |      |             |    |     |             |
| erg | g3∆ erg4∆ | $\bullet$ | 0 | ٠   | *  | :   | •       | •  | ۲          | 34                           | *   | ۰ | ۰    | ٠        | 1      | •  | •  | •    | ٠           | *  | •   |             |
| erg | g3∆ erg5∆ | $\bullet$ | 0 | ۲   | \$ |     | •       | •  |            | -                            |     | • | ۲    | *        |        | ., | •  | ۲    | 镑           | *  |     |             |
| erg | g3∆ erg6∆ | •         | • | *   |    | 1   | •       | ۲  |            |                              |     | 0 |      |          |        |    |    |      |             |    |     |             |
| erg | g4∆ erg5∆ | 0         | ٠ | ٠   | 8  | ••• | 0       | •  | ۲          | -                            |     | • |      | ۲        | -      | •  | •  | •    |             | 4: | :   |             |
| erg | g5∆ erg6∆ | $\bullet$ | • | ۲   | *  | -8- | •       | 0  |            | -                            | .:  | • |      |          | ::     |    | •  | ۲    | <b>\$</b> - | •* |     |             |
| -   | -         |           | ~ |     |    |     |         | ~- | 70         |                              |     |   |      | <u> </u> | $\sim$ |    | `` | / -  |             |    |     |             |
|     |           |           | 3 | SU' | Ū  | ,   |         | 3  | <b>/</b> ~ | Ú                            |     |   | 16   | ٥č       | Ū.     |    |    | ۲۲   | ۲L          | G  |     |             |

| _    | wт       | 0  | •            | *            |            | •. | ٠   | •   | ٠    | *   |      | •  | •               | ٠ | ·.  | ÷  |          |
|------|----------|----|--------------|--------------|------------|----|-----|-----|------|-----|------|----|-----------------|---|-----|----|----------|
| В    | erg2∆    | ۲  | *            |              |            |    | ۰   | •   | .0   | k.  | •    | •  | - 0             |   |     |    | Osmotic  |
|      | erg3∆    | ۲  | ۲            | -            |            |    | •   | ٠   | ۲    | *   | ••   | ۲  |                 |   |     |    | and calt |
|      | erg4∆    | •  | ۲            |              |            |    | •   | •   | 12   | ŝ   | •    | •  | •               | * | 2.7 |    | anu sait |
|      | erg5∆    | •  | ۲            | 縪            | <i>k</i> 3 |    | •   | •   | -    | 4   |      | •  | •               | ٠ | •/  |    | stress   |
|      | erg6∆    | ۲  | -            |              |            |    | ۲   | •   | ANK. | 40  | ••   |    |                 |   |     |    |          |
|      | isc1∆    | •  | ۲            | 2            |            | •  | •   | •   | ۲    | *   | ••   | •  | •               | 1 | :   | -  |          |
| isc  | 1∆ erg2∆ | 10 |              |              |            |    | •   | •   |      |     | 2    |    |                 |   |     |    | ◀        |
| isc1 | 1∆ erg3∆ | ۲  | 3 <b>6</b> 9 |              |            |    | ٠   | •   | ٩    | s,  | •    | ۲  |                 |   |     |    | ◀───     |
| isc  | 1∆ erg4∆ | ۲  |              |              |            |    | ٠   | •   | 4    | *   |      | •  | ٠               | * | ••  | ×  |          |
| isc1 | 1∆ erg5∆ | ۲  | ā;           |              |            |    | •   | ٠   | •    |     | •    | •  | - 104           |   | ·   | 5- | ←──      |
| isc1 | 1∆ erg6∆ |    |              |              |            |    | •   | -   | *    |     |      | C. |                 |   |     | ·6 | ◀───     |
|      | sur2∆    | •  | •            | *            | ÷          | •  | •   | •   | ٠    | *   | •    | •  | ۲               |   |     |    |          |
| sur  | 2∆ erg2∆ | ۲  | *            | ٩.           |            |    | •   | •   |      | -   | •    | ۲  |                 |   |     |    |          |
| sur  | 2∆ erg3∆ | ۲  | -            |              |            |    | •   | 0   | ٢    | \$  |      | 0. |                 |   |     |    |          |
| sur  | 2∆ erg4∆ | ۲  | ۲            | 專            |            |    | •   | •   | Φ    | e.  | • •• | 43 |                 |   |     |    | ◀        |
| sur  | 2∆ erg5∆ | •  | ۲            | ₩.           | .5         |    | •   | •   | 0    | *5  | •    | 8  |                 |   |     |    | ←        |
| sur  | 2∆ erg6∆ |    | -            | .01          |            |    | ۲   | ۲   | 4    | I,  | •    |    |                 |   |     |    |          |
|      | scs7∆    | H  |              |              | 2          | •  | •   | •   |      | 10  | •    | •  | •               | • | *   | 15 |          |
| scs  | 7∆ erg2∆ | ۲  |              |              |            |    | •   | •   | ¢    | *   | •    | •  | ۲               | 4 |     |    |          |
| scs  | 7∆ erg3∆ | ۲  | *            |              |            | •  | •   | •   | ۲    | ۰,  | •.   | ۲  |                 |   |     |    |          |
| scs  | 7∆ erg4∆ | ۲  | B            |              |            |    | •   | •   | 0    | *   | •    | •  | •               | ٠ | 4   |    |          |
| scs  | 7∆ erg5∆ | •  | ٠            | ÷.           |            |    | •   | •   | ۲    | 1   | ••   | •  | •               | 0 | 54  |    |          |
| scs  | 7∆ erg6∆ | ġ. |              |              |            |    | •   | •   | •    | 40  | 3    | æ  |                 |   |     |    | ◀        |
| erg  | 2∆ erg3∆ |    |              |              |            |    | •   |     | ¢    | K+  | :    |    |                 |   |     |    |          |
| erg  | 2∆ erg4∆ |    |              |              |            |    | •   | •   |      | \$  | •    |    |                 |   |     |    |          |
| erg  | 2∆ erg5∆ |    |              |              |            |    | •   | 0   | 9    | "   |      | ġ. |                 |   |     |    |          |
| erg  | 2∆ erg6∆ |    |              |              |            |    |     |     |      |     |      | 0  |                 |   |     |    |          |
| erg  | 3∆ erg4∆ | ۲  | ۲            |              |            |    | •   | •   | ۲    | 2   | \$** | ۲  |                 |   |     |    |          |
| erg  | 3∆ erg5∆ |    |              |              |            |    | •   | 0.  | -    | 势   | 2.   |    |                 |   |     |    |          |
| erg  | 3∆ erg6∆ |    |              |              |            |    | 0   | \$3 |      |     |      | 17 |                 |   |     |    |          |
| erg  | 4∆ erg5∆ | •  | ۲            | <b>B</b>     |            |    | •   | •   | 0    | -   | :    |    | •               | ۲ |     | :  |          |
| erg  | 5∆ erg6∆ | ۲  | -            | , <b>1</b> • |            |    | ۲   | •   | ф    | -Ar |      | ۲  | -               |   |     |    |          |
| NaCl |          |    |              |              | S          | 0  | rbi | to  |      |     | Са   | aC | ;  <sub>2</sub> |   |     |    |          |

| _     | WT      | ٠ | 0 | ٠   | -   | *  | ۲ | ۲   | ۰    | *    |    | ۲ | 0 | ۲   | 24 | •• |        |
|-------|---------|---|---|-----|-----|----|---|-----|------|------|----|---|---|-----|----|----|--------|
| С     | erg2∆   | 0 |   | -   | 勃   |    | ۲ | -29 |      |      |    | 0 | ۲ | ٠   | 44 | ٠  | Cell   |
|       | erg3∆   | 0 | ٠ | 0   | 4   | :  | ۲ | ۲   | ۲    | ٠    | -  | • | ۲ | ۲   | 54 | •  |        |
|       | erg4∆   | ۲ | ۲ | St. | ·** | :  | ۲ | ۲   | 1    | Ċ.   |    | • | ۲ | ۲   |    |    | vvali  |
|       | erg5∆   | • | ٠ |     | *   |    | 0 | •   | ٠    | ¢\$  | •  | • | ۲ | -   | *  |    | Stress |
|       | erg6∆   | ٠ |   | ¥R. |     |    | ۲ | ۰   |      |      |    |   | ۲ | *   | •  | •  |        |
|       | isc1∆   | ۲ |   |     | *   | •  | ۲ | ۲   | ٠    | -    | •  | ۲ | ٠ | *   | Ŷ  | •  |        |
| isc12 | ∆erg2∆  | ۲ |   | 14  | .t. | •  | ۲ |     |      |      |    | • |   | *   | *  |    |        |
| isc14 | erg3∆   | • | ۲ |     | -   | ٠  | ۲ | ۲   | *    | \$   |    | ۰ | ۲ | Ð   | ÷. |    |        |
| isc12 | ∆erg4∆  | ۲ | ۲ | 4   |     |    | ۲ | ۲   | 渉    | *    | •  | • | ۲ | ۲   | 4  | ÷  | ←      |
| isc14 | erg5∆   | • | ۵ |     | **  |    | ۲ | ٠   | ÷    |      |    | 0 | ۲ | -   | •  | •• | ←      |
| isc14 | erg6∆   | ۲ | - | *   |     |    | ۲ |     |      |      |    | • | ۲ | *   |    | •  | ←      |
|       | sur2∆   | ۲ | 0 | -   | 10  | •* | • | ۲   | ۲    | #    | •  | ٢ | ۲ | ۲   | \$ |    |        |
| sur2L | ∆erg2∆  | 0 | ۰ | -   |     |    | ۲ | ۲   | eige |      |    | ۲ | ۲ | -   | ¢. |    |        |
| sur21 | ∆erg3∆  | • | ۲ | *   | •   | ·  | ۲ | ۲   | .jet | . 4  | •  | ۲ |   |     |    |    | ←      |
| sur21 | ∆erg4∆  | • | ۲ | ¢:  | 49  | •  | 0 | ۲   | ÷    |      | •  | • |   | S.  | ъ. |    |        |
| sur21 | ∆erg5∆  | 0 | ۲ | *   |     | .• | ۲ | 0   | ٠    | dig. | •* | • | • | *   | *  |    |        |
| sur22 | ∆ erg6∆ |   | ۲ |     |     |    |   |     |      |      |    |   |   | *   | \$ |    | ←      |
|       | scs7∆   | ۲ | 0 | *   | ٠   | •• | ۲ | ۲   | ٩    | -70  |    | • | ۲ |     | -  | :  |        |
| scs7L | ∆erg2∆  | ۲ |   | *   |     |    | ٠ |     |      |      |    | ۲ |   |     |    |    | ←      |
| scs7L | ∆erg3∆  | 0 | ۹ | *   | •   | •  | ۲ | ۲   | ۲    | £.30 | 1. | • | ۲ | *   | -  | -  |        |
| scs7L | ∆erg4∆  | 0 | ۰ | ٢   | 4   |    | ۲ | ۲   | ٠    |      |    | • | ۲ | -   | 6  |    |        |
| scs7L | ∆erg5∆  | 0 | ۲ | *   | ÷   | •• | • | ۲   | ¢    | 4.94 | •  | 0 | • | *   | :  |    |        |
| scs7L | l erg6∆ | • | ۲ |     |     |    | ۲ | ۲   |      |      |    | • | 0 | .8  | ,  |    |        |
| erg2L | ∆ erg3∆ | • |   |     |     |    |   |     |      |      |    | • | ۲ | 10  | v. | ٠  |        |
| erg2L | ∆erg4∆  | • | * |     |     |    | ۲ |     |      |      |    | • | • |     | •  |    |        |
| erg2L | ∆erg5∆  | • | * | ٠   |     |    | 0 |     |      |      |    | 0 | • | -18 | *  |    |        |
| erg2L | ∆ erg6∆ |   |   |     |     |    |   |     |      |      |    |   |   |     |    |    |        |
| erg3L | ∆erg4∆  | ۰ | ۰ |     | ٩.  | ÷  | ٢ | ۲   | -    |      |    | • | • | 4   | *  | 3  |        |
| erg3L | ∆erg5∆  | • | ٠ |     | •\$ | •• |   |     |      |      |    | • | ۲ | ÷   |    |    |        |
| erg3L | ∆ erg6∆ | • |   |     |     |    |   |     |      |      |    | • | • | *   |    | *  |        |
| erg4L | ∆erg5∆  | 0 |   | *   | •   |    | ۲ | 0   | -    | .%   |    | • | ٩ | 翰   | .2 | •  |        |
| erg52 | ∆ erg6∆ | ۲ | - | 5   | •   | •  | Ø |     |      |      |    | • | ۲ | -   | ** |    |        |
| CFW   |         |   |   | S   | D   | S  |   | Y   | Ŵ    | /3   | 54 | 8 |   |     |    |    |        |

erg5∆ erg6∆ isc1∆  $isc1\Delta erg2\Delta$ isc1∆ erg3∆ isc1∆ erg4∆ isc1∆ erg5∆ isc1∆ erg6∆ sur2∆  $sur2\Delta erg2\Delta$ sur2∆ erg3∆ sur2∆ erg4∆ sur2∆ erg5∆ sur2∆ erg6∆ scs7∆ scs7∆ erg2∆ scs7∆ erg3∆ scs7∆ erg4∆ scs7∆ erg5∆ scs7∆ erg6∆ erg2∆ erg3∆ erg2∆ erg4∆  $erg2\Delta erg5\Delta$ erg2∆ erg6∆ erg3∆ erg4∆ erg3∆ erg5∆ erg3∆ erg6∆ erg4∆ erg5∆ erg5∆ erg6∆

D





















### $scs7\Delta$







 $erg2\Delta$  isc1 $\Delta$ 



# $erg2\Delta$ sur2 $\Delta$



# $erg 2\Delta$ scs7 $\Delta$









### $erg3\Delta$ scs7 $\Delta$











#### erg4 $\Delta$ scs7 $\Delta$











# $erg5\Delta$ sur2 $\Delta$

# $erg5\Delta$ scs7 $\Delta$





 $erg6\Delta$  isc1 $\Delta$ 







## $erg6\Delta$ scs7 $\Delta$

#### Can1-GFP localization







isc1



sur2













erg2 sur2







erg3



erg3 isc1



erg3 sur2



erg3 scs7



erg4



erg4 isc1



erg4 sur2



erg4 scs7

#### Can1-GFP localization









erg5

erg5 isc1

erg5 sur2





erg6



erg6 isc1



erg6 sur2



erg6 scs7





#### Supplementary Figure Legends

Supplementary Figure 1. Ergosterol and sphingolipid synthesis and turnover[1]. A) Synthesis of ergosterol from zymosterol. The Erg proteins used at each enzymatic step are shown. Synthesis of ergosterol from zymosterol is not a linear sequence. The only reaction that strictly depends upon a previous reaction is that of Erg4p, which depends upon prior action of Erg6p. Erg2p is an  $\Delta 8, \Delta 7$  isomerase, Erg3p a  $\Delta 5$  desaturase, Erg4p a  $\Delta 24(28)$  desaturase, Erg5p a  $\Delta 22$  desaturase, Erg6p a  $\Delta 24$  methyltransferase. Erg2p functions inefficiently in the erg6 mutant[2] (Supp Table II). B) Synthesis and turnover of sphingolipids. Sphinganine (commonly called dihydrosphingosine) is synthesized starting from palmitoyl-CoA and serine. If can be hydroxylated by Sur2p to form 4OH-sphinganine (commonly called phytosphingosine). The di- and tri-hydroceramides are made by condensing a C26 fatty acid onto either sphingoid base. The hydroxyceramides are converted to inositol(di/tri)hydroceramides in the Golgi and can be further hydroxylated on the C26 fatty acyl chain by Scs7p. These sphingolipids can be converted to mannosyl and mannosyldiinositolhydroceramides. An additional hydroxylation can occur on the complex sphingolipids (not shown). The head group of the inositolhydroceramides and mannosylated versions can be recycled by action of Isc1p, the first step in sphingolipid degradation which yields inositol phosphate and (di/tri/tetra)hydroceramides. Ceramides are deacylated by the Ydc1p and Ypc1p. Phosphorylated sphingoid bases are removed from the pathway by the sphingoid base phosphate lyase, Dpl1p. Structures were drawn with ACD/ChemSketch freeware.

Supplementary Figure 2. Sphingolipid turnover and consequences in the *erg3 erg6* mutant. The indicated yeast strains were grown to early log phase and 1 ml of cells ( $10^8$  cells/ml) were labeled with <sup>3</sup>H-inositol (25 µCi) for 1 hour, then for an additional 18 hours in presence of

1

unlabeled inositol (180 µg/0.5 ml). Lipids were extracted and equal amounts of radioactive lipids were analyzed by thin layer chromatography and imaged using a Cyclone phosphorimager[3] (Upper panels). One can see that there is little difference in the labeling patterns of the wild type (wt) and *erg3 erg6* mutant cells after a pulse, indicating that synthesis of the major inositol-containing lipids is normal. However, after a chase period it can be seen that there are less IPCs and MIPC in the double erg mutant, but more PI (upper left panel). The *ISC1* gene product is required to generate this difference because addition of the *isc1* mutation to *erg3 erg6* restores its <sup>3</sup>H-inositol chase-labeling pattern to wild type (upper right panel). In the lower panel the indicated strains were grown to stationary phase and serial dilutions were prepared and plated onto YPUADT plates (1% yeast extract, 2% peptone, 2% glucose, 40 mg/l uracil, adenine and tryptophan, 2% agar) and grown for 5 days at 24°C or 37°C, then photographed. The addition of the *isc1* mutation to the *erg3 erg6* strain caused a synthetic growth defect as the triple mutant grew worse than either of the parents.

Supplementary Figure 3. Growth phenotypes of ergosterol and sphingolipid biosynthesis mutants. The indicated strains were grown until stationary phase and diluted to 1.4 OD<sub>600</sub>/ml with water and serial 10 fold dilutions were prepared in microtiter dishes. The dilutions were pinned onto YPD (1% Yeast extract, 2% Peptone, 2% glucose, 40 mM MES, pH 5.5, 2% agar) or YPEG (1% Yeast Extract, 2% Peptone, 3% ethanol, 3% glycerol, 40 mM MES, pH 5.5, 2% agar) plates and then grown at 30°C except when indicated. Plates were photographed after 2 to 6 days depending upon the growth rate on the different plates. An arrow is placed next to the double mutants (ergosterol and sphingolipid) where introduction of the sphingolipid mutation changed growth of the erg mutant (synthetic growth phenotype or improved growth). The following plate compositions were used. A) YPD (30°C, 37°C, 16°C) and YPEG, B) YPD plus 1M NaCl, 1.7M sorbitol, 200 mM CaCl<sub>2</sub>, C) 10 mg/l calcofluor

white, 0.01% SDS, 1 mg/l YW3548[4], D) 2 mM benzoic acid, pH 4.5, 1 mM sorbic acid, pH 4.5, YPD adjusted to pH 9, 200 mM sodium acetate, E) 0.1 mg/l alpha factor, 0.02 mg/l rapamycin, 2 g/l caffeine, F) 0.1 mg/l cycloheximide, 100 mM hydroxyurea, 1 mg/l miconazole. G contains a summary of the suppression and synthetic growth phenotypes, indicated by arrows, seen in the double (ergosterol and sphingolipid) mutants. Some combinations have synthetic phenotypes under several growth conditions.

Supplementary Figure 4. Lipidome of the double mutants. Isogenic wild type, ergosterol, sphingolipid, and double mutant strains were grown in duplicate overnight in rich medium, harvested, washed three times and frozen. Lipid standards (5µg dimyristoyl GPCho, 20µg dimyristoyl GPEtn, 4µg dioctyl GPIns and 15µg didocosahexaenoyl GPSer) were added to 50 OD-equivalent of cells and lipids were extracted as described and measured using negative ion electrospray ionization mass spectrometry (ESI-MS)[5]. The quantities of lipids are expressed as ion intensities relative to wild type levels, converted to a log10 scale. Glycerophospholipids: GPCho, glycerophosphocholine; GPEtn, glycerophosphoceramide; MIPC, mannosyl inositolphosphoceramide. The suffixes -B, -C, and -D on IPC and MIPC denote hydroxylation states, having two, three, or four hydroxyl groups respectively.

Supplementary Figure 5. Fluorescence microscopy of Tat2-mRFP and Can1-GFP. Fluorescent proteins were visualized on log phase cells as described in Experimental Procedures. Representative images are shown for each protein in the wild type and 15 double mutants. Supplementary Figure 6. Transcriptome analysis of single and double mutants. The transcript data was obtained and treated as described in Experimental Procedures. Gene names or identifiers are shown on the right. The scale is log2.

- 1. Souza CM, Pichler H (2006) Lipid requirements for endocytosis in yeast. Biochim Biophys Acta.
- 2. Heese-Peck A, Pichler H, Zanolari B, Watanabe R, Daum G, et al. (2002) Multiple functions of sterols in yeast endocytosis. Mol Biol Cell 13: 2664-2680.
- 3. Funato K, Riezman H (2001) Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J Cell Biol 155: 949-959.
- Sutterlin C, Horvath A, Gerold P, Schwarz RT, Wang Y, et al. (1997) Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis. Embo J 16: 6374-6383.
- 5. Guan XL, Wenk MR (2006) Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Yeast 23: 465-477.

Supplementary Table I. Strains used in this study.

| Name   | Genotype                                                                                      |
|--------|-----------------------------------------------------------------------------------------------|
| RH448  | MATa his4 ura3 lys2 leu2 can1 bar1                                                            |
| RH5812 | MATa erg2A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                                |
| RH4213 | MATa erg3A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                                |
| RH4217 | MATa erg4A::URA3 his4 ura3 lys2 leu2 can1 bar1                                                |
| RH6969 | MATa erg4Д::ura3 his4 ura3 lys2 leu2 can1 bar1                                                |
| RH6774 | MATa erg5_A::KanMx his4 ura3 lys2 leu2 can1 bar1                                              |
| RH5684 | MATa erg6Δ::KanMx his4 ura3 lys2 leu2 can1 bar1                                               |
| RH5912 | MATa isc1 A:: KanMx his4 ura3 lys2 leu2 can1 bar1                                             |
| RH4348 | MATa sur2A::LEU2 his4 ura3 leu2 can1 bar1                                                     |
| RH4524 | MATa scs7 <i>A</i> ::LEU2 his4 ura3 leu2 can1 bar1                                            |
| RH5913 | MATa erg2A::LEU2 isc1A ::KanMx his4 ura3 lys2 leu2 can1 bar1                                  |
| RH5935 | MATa erg3A::LEU2 isc1A ::KanMx his4 ura3 lys2 leu2 can1 bar1                                  |
| RH5916 | MATa erg4_A::LEU2 isc1_A ::KanMx his4 ura3 lys2 leu2 can1 bar1                                |
| RH5917 | MATa erg54::LEU2 isc14 ::KanMx his4 ura3 lys2 leu2 can1 bar1                                  |
| RH6787 | MATa erg64::LEU2 isc14 ::KanMx his4 ura3 lys2 leu2 can1 bar1                                  |
| RH5818 | MATa erg3 <i>A</i> ::LEU2 erg6 <i>A</i> ::LEU2 isc1 <i>A</i> ::KanMx his4 ura3 lys2 leu2 can1 |
|        | bar1                                                                                          |
| RH6711 | MATa erg2A::LEU2 sur2A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6749 | MATa erg3A::LEU2 sur2A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6718 | MATa erg4A::URA3 sur2A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6915 | MATa erg4A::ura3 sur2A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6732 | MATa erg5A ::KanMx sur2A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                  |
| RH6744 | MATa erg6 <i>A</i> ::KanMx sur2 <i>A</i> ::LEU2 his4 ura3 lys2 leu2 can1 bar1                 |
| RH6709 | MATa erg2Δ::LEU2 scs7Δ::LEU2 his4 ura3 leu2 can1 bar1                                         |
| RH6741 | MATa erg3A::LEU2 scs7A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6714 | MATa erg4A::URA3 scs7A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6916 | MATa erg4A::ura3 scs7A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6734 | MATa erg54::KanMx scs74::LEU2 his4 ura3 lys2 leu2 can1 bar1                                   |
| RH6752 | MATa erg6A::KanMx scs7A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                   |
| RH5928 | MATa erg2A::LEU2 erg3A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH5864 | MATa erg2A::LEU2 erg4A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH5866 | MATa erg2A::LEU2 erg5A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH3616 | MATa erg2∆::URA3 erg6∆ ura3 leu2 can1 bar1                                                    |
| RH5868 | MATa erg3A::LEU2 erg4A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH5871 | MATa erg3A::LEU2 erg5A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH5930 | MATa erg3A::LEU2 erg6A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH5873 | MATa erg4_A::LEU2 erg5_A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                  |
| RH5874 | MATa erg5A::LEU2 erg6A::LEU2 his4 ura3 lys2 leu2 can1 bar1                                    |
| RH6971 | Mata PDR12::CFP::HygB ura3 leu2 his4 lys2 can1 bar1                                           |
| RH6926 | Matα sur2Δ::LEU2 PDR12::CFP::HygB ura3 leu2 his4 lys2 can1 bar1                               |
| RH6919 | Matα erg4Δ::URA3 PDR12::CFP::HygB ura3 leu2 his4 lys2 can1 bar1                               |
| RH6930 | Matα erg4Δ::URA3 isc1Δ::KanMx PDR12::CFP::HygB ura3 leu2 his4 lys2 can1 bar1                  |

#### RH6925Matα erg4Δ::URA3 sur2Δ::LEU2 PDR12::CFP::HygB ura3 leu2 his4 lys2<br/>can1 bar1RH6922Matα erg4Δ::URA3 scs7Δ::LEU2 PDR12::CFP::HygB ura3 leu2 his4 lys2<br/>can1 bar1

Yeast strains were constructed using standard gene replacement and tagging methods and double mutants were generated by standard genetic techniques of crossing and tetrad dissection. All strains were generated in the Riezman laboratory.

*ura3* derivatives of *URA3* strains were selected on plates containing 5-fluoroorotic acid(Rothstein, 1991).

#### <u>Reference</u>

Rothstein, R. (1991). Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol *194*, 281-301.

Supplementary Table II. Sterol compositions in the yeast strains used in this study (single determinations)

|                                           | strain                  | wt     | isc1   | sur2   | scs7   |
|-------------------------------------------|-------------------------|--------|--------|--------|--------|
| μg sterols                                | / 10 <sup>8</sup> cells | 26     | 33     | 30     | 31     |
| sterol                                    | mass                    |        |        |        |        |
| Cholesta-5,8,24(25)-trienol               | 382                     | 1.0 %  | 0.6 %  | 0.9 %  | 0.6 %  |
| Cholesta-8,24(25)-dienol                  | 384                     | 9.6 %  | 7.9 %  | 8.6 %  | 9.3 %  |
| Ergosta-5,8,14,22-tetraenol *             | 394                     | 4.8 %  | 3.7 %  | 4.9 %  | 4.6 %  |
| Ergosta-5,7,22,24(28)-tetraenol           | 394                     | 2.8 %  | 2.9 %  | 3.3 %  | 3.0 %  |
| Ergosta-5,7,22-trienol                    | 396                     | 58.5 % | 59.1 % | 61.4 % | 64.7 % |
| Ergosta-5,8,14-trienol *                  | 396                     | 1.4 %  | 1.7 %  | 1.2 %  | 1.1 %  |
| Ergosta-7,22,24(28)-trienol *             | 396                     | 2.0 %  | 1.0 %  | 1.2 %  | 0.9 %  |
| Ergosta-8,24(28)-dienol                   | 398                     | 1.0 %  | 1.5 %  | 2.6 %  | 2.1 %  |
| Ergosta-5,7-dienol                        | 398                     | 16.5 % | 17.2 % | 12.2 % | 11.7 % |
| Ergosta-7,24(28)-dienol                   | 398                     | 1.4 %  | 1.5 %  | 1.5 %  | 1.0 %  |
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426                     | 1.0 %  | 0.9 %  | 1.2 %  | 0.4 %  |

B. *erg2* mutant and *erg2*-derived strains.

|                                           | strain                  | erg2   | isc1 erg2 | sur2 erg2 | scs7 erg2 |
|-------------------------------------------|-------------------------|--------|-----------|-----------|-----------|
| μg sterols                                | / 10 <sup>8</sup> cells | 62     | 52        | 51        | 59        |
| sterol                                    | mass                    |        |           |           |           |
| Cholesta-5,8,14,24(25)-tetraenol *        | 380                     | 9.3 %  | 8.5 %     | 8.9 %     | 6.2 %     |
| Cholesta-8,24(25)-dienol                  | 384                     | 1.5 %  | 1.3 %     | 1.2 %     | 2.4 %     |
| Ergosta-5,8,14,22-tetraenol *             | 394                     | 2.9 %  | 2.5 %     | 2.3 %     | 1.6 %     |
| Ergosta-5,8,22-trienol                    | 396                     | 23.1 % | 22.6 %    | 27.1 %    | 20.7 %    |
| Ergosta-5,8,24(28)-trienol *              | 396                     | 2.7 %  | 1.8 %     | 1.5 %     | 1.9 %     |
| ??                                        | 396                     | 2.0 %  | 1.2 %     | 1.1 %     | 1.5 %     |
| Ergosta-8,22-dienol                       | 398                     | 1.7 %  | 2.0 %     | 1.6 %     | 1.2 %     |
| Ergosta-5,8-dienol                        | 398                     | 3.8 %  | 5.4 %     | 5.0 %     | 3.0 %     |
| Ergosta-8,24(28)-dienol                   | 398                     | 24.5 % | 20.0 %    | 19.4 %    | 32.9 %    |
| ??                                        | 398                     | 3.6 %  | 3.9 %     | 3.6 %     | 3.2 %     |
| Ergosta-8-enol                            | 400                     | 23.8 % | 29.9 %    | 27.6 %    | 24.5 %    |
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426                     | 0.4 %  | 0.3 %     | 0.2 %     | 0.5 %     |

B. *erg3* mutant and *erg3*-derived strains.

|                                           | strain                  | erg3   | isc1 erg3 | sur2 erg3 | scs7 erg3 |
|-------------------------------------------|-------------------------|--------|-----------|-----------|-----------|
| μg sterols                                | / 10 <sup>8</sup> cells | 63     | 52        | 51        | 62        |
| sterols                                   | mass                    |        |           |           |           |
| Cholesta-7,22,24(25)-trienol              | 382                     | 0.2 %  | 0.2 %     | 0.2 %     | 0.3 %     |
| Cholesta-8,24(25)-dienol                  | 384                     | 2.5 %  | 2.4 %     | 2.8 %     | 4.2 %     |
| Ergosta-8,22,24(28)-trienol               | 396                     | 0.5 %  | 0.7 %     | 0.5 %     | 0.4 %     |
| Ergosta-8,14,24(28)-trienol *             | 396                     | 1.0 %  | 1.0 %     | 0.8 %     | 0.7 %     |
| Ergosta-7,22,24(28)-trienol               | 396                     | 1.2 %  | 1.3 %     | 1.0 %     | 0.9 %     |
| Ergosta-8,22-dienol                       | 398                     | 1.6 %  | 1.7 %     | 1.8 %     | 1.6 %     |
| Ergosta-7,22-dienol                       | 398                     | 44.3 % | 41.1 %    | 41.2 %    | 40.4 %    |
| Ergosta-8,24(28)-dienol                   | 398                     | 6.4 %  | 6.5 %     | 7.5 %     | 7.5 %     |
| Ergosta-7,24(28)-dienol                   | 398                     | 15.5 % | 15.0 %    | 15.5 %    | 18.7 %    |
| Ergosta-8-enol                            | 400                     | 4.2 %  | 4.5 %     | 4.7 %     | 4.3 %     |
| Ergosta-7-enol                            | 400                     | 20.9 % | 23.1 %    | 22.8 %    | 19.0 %    |
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426                     | 0.1 %  | 0.3 %     | 0.2 %     | 0.2 %     |

C. *erg4* mutant and *erg4*-derived strains\*\*.

|                                           | strain                  | erg4   | isc1 erg4 | sur2 erg4 |
|-------------------------------------------|-------------------------|--------|-----------|-----------|
| μg sterols                                | / 10 <sup>8</sup> cells | 43     | 57        | 43        |
| sterols                                   | mass                    |        |           |           |
| Cholesta-8,24(25)-dienol                  | 384                     | 3.7 %  | 2.3 %     | 3.4%      |
| Ergosta-5,8,14,22,24(28)-pentaenol *      | 392                     | 3.3 %  | 2.8 %     | 2.7%      |
| Ergosta-5,7,14,22,24(28)-pentaenol *      | 392                     | 1.9 %  | 3.1 %     | 2.9 %     |
| ??                                        | 392                     | ~ 6 %  | ~ 7 %     | ~6 %      |
| Ergosta-5,8,22,24(28)-tetraenol           | 394                     | 1.3 %  | 1.0 %     | 1.1 %     |
| Ergosta-5,7,22,24(28)-tetraenol           | 394                     | 79.2 % | 79.1 %    | 80.5%     |
| Ergosta-5,8,24(28)-trienol                | 396                     | ~ 2 %  | ~ 2 %     | ~2 %      |
| 4-Methyl cholesta-8,24(25)-dienol         | 398                     | 0.8 %  | 0.7 %     | 0.6 %     |
| Ergosta-7,24(28)-dienol                   | 398                     | 0.7 %  | 0.9 %     | 0.7 %     |
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426                     | 0.4 %  | 0.5 %     | 0.4 %     |

|                                           | strain                    | erg4   | erg4 scs7 |
|-------------------------------------------|---------------------------|--------|-----------|
| μg sterols                                | s / 10 <sup>8</sup> cells | 39     | 38        |
| sterols                                   | mass                      |        |           |
| Cholesta-8,24(25)-dienol                  | 384                       | 2.1 %  | 3.0 %     |
| Ergosta-5,8,14,22,24(28)-pentaenol *      | 392                       | 0.8 %  | 0.8 %     |
| Ergosta-5,7,22,24(28)-tetraenol           | 394                       | 86.8 % | 85.5 %    |
| Ergosta-5,8,22,24(28)-tetraenol *         | 394                       | 1.0 %  | 1.0 %     |
| Ergosta-5,8,24(28)-trienol                | 396                       | ~6 %   | ~5 %      |
| 4-Methyl cholesta-8,24(25)-dienol         | 398                       | 1.4 %  | 1.2 %     |
| 4,4-Dimethyl cholesta-8,24(25)-dienol     | 412                       | 0.6 %  | 0.8 %     |
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426                       | 0.9 %  | 1.7 %     |

D. *erg5* mutant and *erg5*-derived strains.

|                                           | strain                    | erg5   | isc1 erg5 | sur2 erg5 | scs7 erg5 |
|-------------------------------------------|---------------------------|--------|-----------|-----------|-----------|
| μg sterol                                 | s / 10 <sup>8</sup> cells | 54     | 32        | 43        | 35        |
| sterols                                   | mass                      |        |           |           |           |
| Cholesta-8,24(25)-dienol                  | 384                       | 5.6 %  | 4.2 %     | 5.0%      | 6.1 %     |
| Ergosta-5,8,14-trienol *                  | 396                       | 4.5 %  | 5.3 %     | 5.6 %     | 5.8 %     |
| Ergosta-5,7,14-trienol *                  | 396                       | 5.3 %  | 5.6 %     | 5.6 %     | 5.3 %     |
| Ergosta-5,7,24(28)-trienol                | 396                       | 2.3 %  | 2.3 %     | 3.2 %     | 2.2 %     |
| Ergosta-5,8-dienol                        | 398                       | 1.5 %  | 1.6 %     | 1.5 %     | 1.3 %     |
| Ergosta-5,7-dienol                        | 398                       | 77.2 % | 78.1 %    | 76.0 %    | 77.0 %    |
| Ergosta-8,24(28)-dienol                   | 398                       | 0.8 %  | 0.6%      | 1.0 %     | 0.8 %     |
| Ergosta-8-enol                            | 400                       | 0.1 %  | -         | 0.2 %     | -         |
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426                       | 1.4%   | 1.3 %     | 1.4 %     | 0.9 %     |

E. erg6 mutant and erg6-derived strains\*\*.

|                                           | strain                    | erg6   | sur2 erg6 | scs7 erg6 |
|-------------------------------------------|---------------------------|--------|-----------|-----------|
| μg sterol                                 | s / 10 <sup>8</sup> cells | 43     | 29        | 42        |
| sterols                                   | mass                      |        |           |           |
| Cholesta-5,8,14,24(25)-tetraenol *        | 380                       | 2.9 %  | 3.2 %     | 2.5 %     |
| ??                                        | 380                       | 6.6 %  | 3.9 %     | 5.0 %     |
| Cholesta-8,22,24(25)-trienol *            | 382                       | 0.7 %  | 0.7 %     | 0.5 %     |
| Cholesta-5,8,24(25)-trienol               | 382                       | 5.8 %  | 7.8 %     | 6.3 %     |
| Cholesta-7,22,24(25)-trienol *            | 382                       | 2.1 %  | 2.5 %     | ~ 3 %     |
| Cholesta-5,7,24(25)-trienol               | 382                       | 34.5 % | 27.4 %    | 30.1 %    |
| Cholesta-8,24(25)-dienol                  | 384                       | 41.1 % | 44.7 %    | ~ 46 %    |
| Cholesta-7,24(25)-dienol                  | 384                       | 4.1 %  | 4.8 %     | 3.3 %     |
| 4-Methyl cholesta-8,24(25)-dienol         | 398                       | 0.6 %  | 0.8 %     | 0.5 %     |
| 4,4-Dimethyl cholesta-8,24(25)-dienol     | 412                       | 0.9 %  | 1.0 %     | 0.8 %     |
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426                       | 0.5 %  | 1.1 %     | 0.4 %     |

|                                    | strain                             | erg6     | erg6 isc1 |
|------------------------------------|------------------------------------|----------|-----------|
| μg stero                           | μg sterols / 10 <sup>8</sup> cells |          | 39        |
| sterols                            | mass                               |          |           |
| Cholesta-5,8,14,24(25)-tetraenol * | 380                                | 0.9 %    | 0.7 %     |
| ??                                 | 380                                | 7.8 %    | 8.3 %     |
| Cholesta-5,8,24(25)-trienol        | 382                                | 7.1 %    | 6.9 %     |
| Cholesta-5,7,24(25)-trienol        | 382                                | 46.6 % % | 50.2 %    |
| Cholesta-8,24(25)-dienol           | 384                                | 25.1 %   | 23.7 %    |
| Cholesta-7,24(25)-dienol           | 384                                | 5.8 %    | 5.9 %     |
| 4-Methyl cholesta-8,24(25)-dienol  | 398                                | 1.5 %    | 1.1 %     |

| 4,4-Dimethyl cholesta-8,24(25)-dienol     | 412 | 1.9 % | 1.1 % |
|-------------------------------------------|-----|-------|-------|
| 4,4,14-Trimethyl cholesta-8,24(25)-dienol | 426 | 2.0 % | 1.2 % |

\* denotes sterols whose identity is not certain.

\*\*Sterol determinations for some of the *erg4* and *erg6* strains were determined in two separate experiments. The data from each experiment is presented in a separate table.

Data on some minor sterols (less than 2% of total) whose identity was not certain is not shown.

Isogenic wild type and ergosterol mutant strains were grown overnight in 2% peptone, 1% yeast extract, 2% glucose, 20 mM MES, 40 mg/l each adenine, uracil, tryptophan at 30°C, harvested at 1-2 OD600/ml and washed three times with water. 4  $\mu$ g of cholesterol was added as an internal standard to 5 x 10<sup>8</sup> cells and total sterols were extracted, derivatized and analyzed as described previously<sup>1</sup>. One can see that there are some differences in sterols between experiments, however these differences sometimes exceed those found between *erg* and *erg*-derived strains in a single experiment. Therefore, we cannot find any significant differences in sterol composition in *erg* strains that are caused by introduction of the sphingolipid mutations. In particular, in the wild type sterol background no substantial differences in sterol amounts or composition were detected (A). With the possible exception of the *sur2 erg6* strain all *erg* mutants. We have not determined whether the increased sterol amount is due to an increase in free and/or esterified sterols, but find it more likely that the increases are mainly reflected in esterified sterols.

1. Heese-Peck, A. et al. Multiple functions of sterols in yeast endocytosis. *Mol Biol Cell* **13**, 2664-80 (2002).