Supporting Information

Patrat et al. 10.1073/pnas.0810683106

<

Fig. S1. Expression of the B1 family of SINE repetitive elements at the 2-cell stage in female embryos. A representative example of repeat-probe RNA FISH on a 2-cell embryo. A single blastomere of a 2-cell embryo is shown, with clear B1 SINE expression (*red*) in regions overlapping with and surrounding the paternal *Xist* RNA signal (*green*). DAPI staining of DNA is shown on the *Right* (black and white). It should be noted that SINE transcripts are excluded from adjacent nucleoli (depleted of DAPI) but not from the DAPI-stained DNA surrounding the paternal Xist signal.

Fig. 52. Transcriptional activity of the paternal and maternal X chromosomes assayed by gene RNA FISH for 16 genes in 2-cell embryos. (A) Two primary transcript signals derived from the maternal and paternal X chromosomes (*red*) could be detected for every gene tested. On the bottom of each panel is shown the percentage of biallelic expression observed at the 2-cell stage for a given gene, when considering the totality of embryos, including male and female, as well as the number of embryos tested. (*B*) Percentage X-linked gene expression originating from the maternal (Xm) or paternal (Xp) allele at the 2-cell stage in female embryos. Genes were considered only in cases in which it was possible to formally conclude that the signal was coming from the paternal or maternal allele.

<

Fig. S3. Kinetics of Xm expression of the 18 different genes during male preimplantation development. Each curve represents the kinetics of one gene. Five different cell stages have been studied (2-cell, 4-cell, 8-cell, 16–32-cell, and trophectoderm cells of blastocyst). For all of the genes, a minimum of 5 embryos was studied for each cell stage.

DNAS

S ▼

Fig. S4. An example of the transcriptional activity of an X-linked gene, *Atp6ap2* during male embryo preimplantation development. One *Atp6ap2* RNA FISH signal (*red*) could be detected at every stage examined (2-cell, 8-cell, 16-cell, and blastocyst stages). *Xist* (green) is expressed from the 8-cell stage in males.

SANG SANG

В

DN A C

Fig. S5. Kinetics of Xp expression of the 18 different genes during female preimplantation development. For every X-linked gene, gene expression from the paternal allele in female embryos was normalized to the expression from the maternal allele observed in male embryos at the same cell stage. Five different cell stages were studied (2-cell, 4-cell, 8-cell, 16–32-cell, and trophectoderm cells of blastocyst). For all of the genes, a minimum of 5 embryos was studied for each cell stage. (*A*) Each curve represents the kinetics of 1 gene. (*B*) Color coding reflects relative Xp expression level as indicated (white: 100%; light grey: 70–99%; medium-light grey: 50-69%; medium-dark grey: 30-49%; dark grey: 14-29%; black: $\leq 15\%$).

Fig. S6. Specific profile of *Atrx* and *Huwe1* transcriptional activity during X-imprinted inactivation assayed by RNA FISH in preimplantation stages. (*A*) *Atrx* primary transcript signals (red) evidenced by specific RNA FISH at 8-cell (*Upper Left*) and 16-cell (*Bottom Left*) stages. Two signals coexisted, with 1 within the *Xist* domain (green) at the 8-cell and 16-cell stages. *Huwe1* primary transcript signals (red) evidenced by specific RNA FISH at 8-cell (*Upper Right*) and 16-cell (*Bottom Right*) stages. Two signals coexisted, with 1 within the *Xist* domain (green) at the 8-cell and 16-cell stages. *Huwe1* primary transcript signals (red) evidenced by specific RNA FISH at 8-cell (*Upper Right*) and 16-cell (*Bottom Right*) stages. Two signals coexisted, with 1 within the *Xist* domain (green) at the 8-cell and 16-cell stages. (*B*) Kinetics of expression of *Atrx* (*Left*) and *Huwe1* (*Right*) during preimplantation development. Xp-*Atrx* and Xp-*Huwe1* expressions observed in female embryos were normalized as a function of the expression seen in male embryos for the same cell stage and the same gene. Four different preimplantation cell stages were studied (2-cell, 8-cell, 16–32-cell, and trophectoderm cells of blastocyst). The numbers represent the number of studied embryos.

Fig. 57. Huwe1 expression in female TS cells at Day 5 of differentiation by RNA FISH. RNA FISH analysis shows that only 1 Huwe1 primary transcript signal (red), distinct from the Xist RNA domain (green), could be seen on the Xp allele.

<

Table S1. Atrx and Huwe1 expression in 4 different tissues isolated from female embryos at 6.5 dpc

Tissue	Gene	Total no. of cells (no. of embryos)	Cells with monoallelic expression (%)	Cells with biallelic expression (%)
Proximal endoderm	Atrx	200 (4)	100	0
	Huwe1	150 (3)	100	0
Extraembryonic ectoderm	Atrx	190 (4)	7	93
	Huwe1	126 (3)	84	16
Distal endoderm	Atrx	94 (4)	94	6
	Huwe1	104 (3)	98	2
Embryonic ectoderm	Atrx	346 (4)	83	17
	Huwe1	202 (3)	94	6

PNAS PNAS

Table S2. List of genomic BAC probes

PNAS PNAS

Clone no.	Gene	Gene title	
RP23-43D10	Atp6ap2	ATPase	
RP23-174N2	Utx	Ubiquitously transcribed tetratricopep, repeat gene, X chr.	
RP23-28615	Slc25a5	Solute carrier family 25, isoform 5	
RP24-173A8	Lamp2	Lysosomal membrane glycoprotein 2	
RP24-183G11	Fmr1	Fragile X mental retardation syndrome 1 homologue	
RP23-77L16	Mecp2	Methyl CpG binding protein 2	
RP23-13D21	G6pdx	Glucose-6-phosphate dehydrogenase X-linked	
RP24-248G16	Kif4	Kinesin family member 4	
RP23-331B22	Rps4x	Ribosomal protein S4	
RP24-240J16	Rnf12	Ring finger protein 12	
RP23-260I15	Atrx	Alpha thalassemia/mental retardation syndrome X-linked homologue	
RP23-186F4	Atp7a	ATPase, Cu++ transporting, α polypeptide	
RP23-26D22	Gla	Galactosidase, α	
RP23-84O5	Fgd1	FYVE, RhoGEF, and PH domain containing 1	
RP24-157H12	Huwe1	HECT, UBA, and WWE domain containing 1	
RP24-148H21	Jarid1c	Jumonji, AT rich interactive domain 1C	
RP24-211E22	Pdha1	Pyruvate dehydrogenase E1 α 1	