Supporting Information

Foxe et al. 10.1073/pnas.0807679106

SI Text

MIMAR Model Assessment. Mimar simulates samples under a model of isolation with migration, with six parameters, where population 1 is *Capsella grandiflora* and population 2 *Capsella rubella*: θ_1 , θ_2 , θ_a , M_{12} (migration rate from population 1 to population 2), M_{21} (migration rate from population 2 to population 1), and τ (divergence time). We considered four nested models of demographic history: model 1 assumed no migration and constrained the ancestral effective population 1 (i.e., $\theta_a = \theta_1, M_{12} = M_{21} = 0$); model 2 allowed for symmetric migration ($\theta_a = \theta_1, M_{12} = M_{21}$); model 3 allowed for asymmetric migration and ree effective population sizes for each population.

Goodness-of-Fit Tests and Likelihood Ratios. We performed goodness-of-fit tests by using MIMARgof (1) and a modified version of ms, mspopr, which can simulate a lineage-specific change in population recombination rate (E. Stahl, unpublished data). For each model, we generated 10,000 simulations of 25 loci by using the same number of sites and individuals sequenced per locus as in the original dataset. Another set of 10,000 simulations of 25 loci were run in mspopr, including a lineage-specific change in recombination in C. rubella, but with parameter estimates for each model otherwise unchanged. Specifically, we set the population recombination rate to zero in the C. rubella lineage at the time of the split of C. grandiflora and C. rubella. Finally, we also performed goodness-of-fit tests by using the predictive posterior distributions of each model. Model fit was assessed by calculating one-tailed P values for observed summary statistics, based on distributions of simulated statistics. In addition to the mean sums over all loci of shared and unique variants used by MIMAR (S1 and S2 for unique polymorphisms in C. grandiflora and C. rubella, respectively, and Ss and Sf for shared and fixed polymorphisms), we performed goodness-of-fit tests on mean nucleotide diversity estimates ($\pi 1$ and $\pi 2$ for *C. grandiflora* and *C.* rubella, respectively), mean F_{st} and mean Tajima's D, to assess how well the model could accommodate aspects of data not directly used by MIMAR. To further assess the fit of the data to a model with no locus-specific positive selection, we also assessed the fit of the data to the variance in pi and Tajima's D [var(π 1), $var(\pi 2)$, varTajD1, varTajD2].

Goodness-of-fit tests were performed in two ways: (i) simulating under the Bayesian posterior distribution of parameters (i.e., predictive posterior), and (ii) simulating under the marginal modes of the posterior parameter distributions. The second approach allowed us to assess the degree to which a single demographic model can explain all aspects of the data, whereas the first approach allows a comparison of the overall fit of each inferred posterior distribution. As shown in supporting information (SI) Table S1, predictive posterior simulations suggest that all models fit the data equally well under this criterion, suggesting that model 1 is sufficient to explain our data, without the need to invoke migration and changes in effective population size between population 1 and the ancestral population. In other words, we cannot reject the null hypothesis of no migration and equal effective population sizes between population 1 and the ancestral population. Using a likelihood ratio test from maximum likelihood estimates across the MIMAR runs provides a similar conclusion, i.e., the more parameter-rich models do not provide a significant improvement to the likelihood over model 1 (Table S2). Although the likelihoods in this analysis should be considered as approximate, the combination of results from the predictive posterior and the likelihood analysis is consistent with the hypothesis that model 1 adequately explains the data.

As shown in Table S3, simulations under the marginal modes provide further evidence in favor of the simpler models over the parameter-rich models. In particular, best-fit parameters under models 1 and 2 are consistent with all tested summary statistics, whereas model 3 fails one goodness-of-fit test, and model 4 fails five tests. Very similar conclusions are obtained when we allow for a lineage-specific change in recombination (Table S4). One possible explanation for the poor fit of model 4 is that the combination of modes from the marginal posterior distributions is distinct from the best-fitting parameter set. To explore this possibility, we also conducted goodness-of-fit tests under the maximum likelihood parameter estimates for each model. Although these simulations improve the fit considerably, the unconstrained model still shows a poorer fit to the data than the simpler models for parameters not used in estimation (Tables S3 and S4). In particular, the observed values for nucleotide diversity, Tajima's D, and the variance of Tajima's D in C. grandiflora have low probabilities under this model. This inconsistency is likely because high gene flow and population growth inferred in C. grandiflora under this model are not consistent with the patterns consistent with stable equilibrium in this species.

Exploring the Effects of Positive Selection on Diversity. If recurrent positive selection reduced diversity in C. rubella across the genome, we would predict that these positive selection events would erode any ancestral variation such that the majority of segregating variation would be unique to C. rubella. In contrast with this expectation, we found that 84% of variation in C. rubella is shared with C. grandiflora. To illustrate this expectation, we simulated 10,000 39-gene datasets under (i) the inferred bottleneck model assuming no migration, (ii) the selective sweep model of Thornton and Jensen (2), allowing for only a slight bottleneck of a twofold reduction in effective population size, and (iii) the selective sweep model of Innan and Kim (3) under a slight bottleneck, with positive selection acting on standing variation. All simulations assumed a divergence time of 14,000 years, and an ancestral θ equal to θ in C. grandiflora of 0.03 per base pair.

Under the bottleneck model, 60% of 39-gene datasets show 84% or more shared polymorphisms in *C. rubella*, consistent with our observed data (Fig. S4). In contrast, simulating under a model of selective sweeps, allowing for only a slight bottleneck (reduction of Ne by half in *C. rubella*) with a selective sweep during the bottleneck (4Ns = 6,500), no 39-gene datasets in 10,000 were found to have this high a fraction of shared polymorphisms; the maximum proportion of shared polymorphisms was found to be 0.46 (Fig. S4). Similarly, the model of selection from standing variation generated no datasets with the observed fraction of shared polymorphism, and the maximum proportion observed was 0.79. Although these simulations are not exhaustive, they illustrate that under reasonable parameter values, we would not expect genome-wide polymorphism.

Generating Data Summaries and the Use of Ancestral State Inference.

Because MIMAR relies on the inference of derived SNPs, we made every effort to minimize errors associated with ancestral misinference. To determine derived states we used PAML (4) to perform likelihood reconstruction of ancestral states for the

common ancestor of *Capsella* under various substitution models. These likelihood reconstructions were based on sequence data from *A. thaliana*, *A. lyrata*, *B. stricta*, *C. grandiflora*, and *C. rubella*. Given that the phylogenetic position of *Capsella* in relation to *Boechera* and *Arabidopsis* shows some uncertainty (5, 6), we assumed a star-shaped phylogeny for the three genera. For the purposes of these reconstructions we also assumed that within-*Capsella* genealogies are star shaped. Data reported here are from likelihood reconstructions under the Kimura 2 Parameter (K80) model that distinguishes between transitions and transversions. The reconstructed ancestor of *Capsella* was then used to infer ancestral states for the *Capsella* polymorphism data.

- 1. Becquet C, Przeworski M (2007) A new approach to estimate parameters of speciation models with application to apes. *Genome Res* 17(10):1505–1519.
- Thornton KR, Jensen JD (2007) Controlling the false-positive rate in multilocus genome scans for selection. Genetics 175(2):737–750.
- Innan H, Kim Y (2008) Detecting local adaptation using the joint sampling of polymorphism data in the parental and derived populations. *Genetics* 179(3):1713–1720.
- Yang Z (1997) PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS 13:555–556.

By using the method of Baudry and Depaulis (7) we calculated the rate of ancestral misinference in our dataset as 0.084/base, using transition/transversion ratios estimated directly at synonymous sites. To explore any effect that this residual error may have on demographic inference, we generated a modified version of MIMAR code to use data summaries that do not rely on outgroup inference. In particular, we modified Ss to include only shared polymorphisms, whereas S1 and S2 represent polymorphisms unique to population 1 and 2, respectively, regardless of ancestral vs. derived states. As shown in Table S6, parameter estimates using this approach are very much in line with estimates reported in Table 1 of the text.

- Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544.
- Al-Shehbaz IA, Beilstein MA, Kellog EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): An overview. Plant Systematics Evol 259:89–120.
- 7. Baudry E, Depaulis F (2003) Effect of misoriented sites on neutrality tests with outgroup. *Genetics* 165(3):1619–1622.
- Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123:585–595.

AS PNAS

Fig. S4. Distribution of the fraction of shared polymorphism from simulated 39-gene datasets. Arrow shows the observed fraction of shared polymorphisms from the data. The selective sweep model was run using the deterministic model of Thornton and Jensen (2), with the sweep occurring 10,500 years ago, and a selection coefficient(s) of 0.003. The model of standing variation assumed a selection coefficient of 0.003 and an initial allele frequency of 0.01 for the selected allele.

Table S1. Predictive posterior probabilities from simulations of the posterior distributions (see SI Text for details)

Model	S1*	S2 ⁺	Ss‡	Sf§	Fst¶	π 1 $^{\parallel}$	<i>π</i> 2**	Tajima's D1 ⁺⁺	Tajima's D2 ^{‡‡}
1	0.42	0.25	0.44	0.35	0.47	0.42	0.28	0.34	0.27
2	0.37	0.27	0.42	0.50	0.40	0.37	0.06	0.31	0.47
3	0.44	0.39	0.39	0.38	0.46	0.42	0.25	0.33	0.48
4	0.39	0.34	0.43	0.43	0.45	0.24	0.30	0.16	0.48

Values shown are 1-tailed probabilities of the observed data from simulations under the posterior parameter distributions.

*Mean number of unique polymorphisms in C. grandiflora.

[†]Mean number of unique polymorphisms in *C. rubella*. [‡] Mean number of shared polymorphisms.

[§]Mean number of fixed differences.

[¶]Mean population differentiation.

PNAS

PNAS PNAS

Average pairwise differences in *C. grandiflora*. **Average pairwise differences in *C. rubella*.

^{††}Average Tajma's D in *C. grandiflora*. ^{‡‡}Average Tajima's D in *C. rubella*.

Foxe et al. www.pnas.org/cgi/content/short/0807679106

Table S2. Likelihood ratio test comparing model 1 with other models

PNAS PNAS

		No. of parameters		
Model	Description	estimated	Ln likelihood	2 (L2-L1)*
1	Ancestral theta constrained, no migration	3 (θ1, θ2, τ)	-117.68	_
2	Ancestral theta constrained, symmetric migration	4 (θ1, θ2, τ, M)	-117.66	0.04ns
3	Ancestral theta constrained, asymmetric migration	5 (θ1, θ2, τ, M12, M21)	-116.29	2.78ns
4	Asymmetric migration, ancestral theta distinct	6 (θ1, θ2, θa, τ, M12, M21)	-114.08	7.3 ns

*Last column shows twice the difference in In likelihoods between the model and model 1, and significance is given by using the Chi squared approximation (ns = not significant), with the number of degrees of freedom equal to the difference in the number of free parameters.

Table S3. Goodness-of-fit test *P* values based on simulations under the marginal modes (a) and under maximum likelihood parameter estimates (b)

						Tajima's	Tajima's						
Model	S1c	S2 ^d	Sse	$\Pi 1^{f}$	$\pi 2^{g}$	D1 ^h	D2 ⁱ	Fst ^j	Sf ^k	$var(\pi 1)$	var(π 2) ^m	var(Tajima's D1) ⁿ	var(Tajima's D2) °
1a	0.411	0.301	0.372	0.332	0.231	0.319	0.220	0.385	0.456	0.497	0.226	0.278	0.386
1b	0.455	0.492	0.404	0.302	0.190	0.314	0.215	0.332	0.470	0.480	0.206	0.286	0.397
2a	0.196	0.118	0.237	0.202	0.286	0.324	0.150	0.099	0.257	0.413	0.459	0.290	0.385
2b	0.207	0.405	0.486	0.472	0.004*	0.460	0.459	0.004*	0.323	0.428	0.018*	0.312	0.276
3a	0.326	0.125	0.476	0.326	0.017*	0.325	0.468	0.043*	0.420	0.491	0.050	0.294	0.421
3b	0.408	0.201	0.481	0.300	0.048	0.328	0.466	0.113	0.417	0.483	0.092	0.283	0.469
4a	0.442	0.213	0.009*	0.001*	0.008*	0.031*	0.470	0.100	0.468	0.018*	0.026*	0.036*	0.421
4b	0.215	0.343	0.257	0.072*	0.202	0.055*	0.472	0.392	0.315	0.140	0.142	0.045*	0.483

Values shown are 1-tailed *P* values of the observed mean and variances of summary statistics by using coalescent simulations under the various parameter combinations. Significant and marginally significant departures are shown with an asterisk.

^cMean number of unique polymorphisms to *C. grandiflora*.

^dMean number of unique polymorphisms to *C. rubella*.

^eMean number of shared polymorphisms.

^fAverage pairwise differences in C. grandiflora.

⁹Average pairwise differences in C. rubella.

^hAverage Tajma's D in *C. grandiflora.*

ⁱAverage Tajima's D in C. rubella.

^jMean differentiation.

DN A C

^kMean number of fixed differences.

^IVariance in pairwise differences in *C. grandiflora*.

^mVariance in pairwise differences in *C. rubella*.

ⁿVariance in Tajma's D in *C. grandiflora*.

°Variance in Tajima's D in C. rubella.

Table S4. Goodness-of-fit test *P* values based on simulations under the marginal modes (a) and under maximum likelihood parameter estimates (b), allowing for a lineage-specific change in recombination in population 2

_ ..

_ ..

Model	S1c	S2 ^d	Sse	$\pi 1^{\mathrm{f}}$	$\pi 2^{g}$	D1 ^h	D2 ⁱ	Fst ^j	Sf ^k	$var(\pi 1)$	var(π 2) ^m	var(Tajima's D1) ⁿ	var(Tajima's D2) °
1a	0.415	0.309	0.372	0.337	0.238	0.333	0.219	0.384	0.439	0.498	0.236	0.278	0.397
1b	0.450	0.492	0.406	0.305	0.187	0.332	0.221	0.327	0.478	0.482	0.202	0.284	0.404
2a	0.193	0.115	0.232	0.200	0.287	0.321	0.151	0.098	0.256	0.411	0.448	0.290	0.380
2b	0.206	0.407	0.497	0.475	0.004*	0.460	0.453	0.003*	0.314	0.428	0.018*	0.318	0.262
3a	0.319	0.128	0.475	0.331	0.016*	0.329	0.468	0.042*	0.423	0.495	0.046*	0.285	0.424
3b	0.399	0.204	0.470	0.316	0.054*	0.328	0.473	0.109	0.405	0.475	0.100	0.282	0.475
4a	0.437	0.210	0.009	0.001*	0.007*	0.031	0.469	0.099	0.464	0.017*	0.024*	0.037*	0.414
4b	0.221	0.338	0.250	0.063*	0.201	0.054*	0.475	0.380	0.310	0.131	0.144	0.044*	0.490

Values shown are 1-tailed P values of the observed mean and variances of summary statistics by using coalescent simulations under the various parameter combinations. Significant and marginally significant departures are shown with an asterisk.

^cMean number of unique polymorphisms to *C. grandiflora*.

^dMean number of unique polymorphisms to *C. rubella*.

^eMean number of shared polymorphisms.

^fAverage pairwise differences in *C. grandiflora.*

⁹Average pairwise differences in *C. rubella*.

^hAverage Tajma's D in *C. grandiflora*.

Average Tajima's D in C. rubella.

^jMean differentiation.

DN A C

^kMean number of fixed differences.

Variance in pairwise differences in C. grandiflora.

^mVariance in pairwise differences in *C. rubella*.

ⁿVariance in Tajma's D in *C. grandiflora*.

°Variance in Tajima's D in C. rubella.

Table S5. Sequence-based summary statistics as estimated for each locus in both C. grandiflora and C. rubella

	Sample	e Synonymous	Theta	S	π	Tajima's D	Replacement	Theta	S	π	Tajima's D
Species Lo	ocus size	sites	synonymous	synonymous	synonymous	synonymous	sites	replacement	replacement	replacement	replacement
C grandiflora Atla	01040 34	120 1095238	0.012217381	6	0.012/81181	0.059785052	/19 890/762	0.002912315	5	0.001095269	-1 6/9659063
C grandiflora Attg	103560 28	128 1551724	0.006015516	3	0.00487174	-0.456422119	459 8448276	0.007264736	13	0.004245739	-1 392653386
C. grandiflora At1g	104650 32	149.4090909	0.024929075	15	0.020308498	-0.616260234	474.5909091	0.005755263	11	0.006346722	0.326203043
C. grandiflora At1g	x06520 28	115.3045977	0.02451511	11	0.022484729	-0.270635841	400.6954023	0.005771862	9	0.004819663	-0.520883643
C. grandiflora At1g	106530 38	111.4188034	0.034178123	16	0.036921937	0.260600475	440.5811966	0.008103115	15	0.006715557	-0.550965203
C. grandiflora At1g	, 10900 26	139.7407407	0.003750622	2	0.00457991	0.473577154	448.2592593	0	0	0	0
C. grandiflora At1g	g11050 32	118.4646465	0.044017205	21	0.052792394	0.689702738	352.5353535	0.004226107	6	0.0035629	-0.440821078
C. grandiflora At1g	, 15240 30	111.9516129	0.022547226	10	0.011417084	-1.563384883	410.0483871	0.015389637	25	0.009127042	-1.448709834
C. grandiflora At1g	g31930 8	108.0925926	0.024976036	7	0.023458724	-0.289096242	317.9074074	0.001213167	1	0.000786392	-1.054819107
C. grandiflora At1g	359720 30	114.3494624	0.077260479	35	0.093502442	0.76792837	419.6505376	0.015639002	26	0.016340909	0.160323884
C. grandiflora At1g	g62390 36	124.472973	0.025185881	13	0.021551182	-0.459368216	466.527027	0.003101439	6	0.002534772	-0.499232495
C. grandiflora At1g	962520 28	129.8045977	0.075228311	38	0.079260365	0.199241023	416.1954023	0.00617434	10	0.00359772	-1.342343614
C. grandiflora At1g	g65450 22	117.6811594	0.058276411	25	0.067207792	0.580648839	389.3188406	0.004932333	7	0.003891801	-0.6750978
C. grandiflora At1g	g68530 36	135.7792793	0.030192862	17	0.033469352	0.358580449	443.2207207	0.001632263	3	0.000605238	-1.409039404
C. grandiflora At1g	g72390 40	115.2804878	0.014275502	7	0.006561477	-1.496242606	409.7195122	0.004016618	7	0.00269728	-0.909511059
C. grandiflora At1g	974600 30	121.1236559	0.025007815	12	0.018258153	-0.880694329	406.8763441	0.003722308	6	0.004418299	0.533564216
C. grandiflora At1g	978850 36	103.6621622	0.0604842	26	0.08571801	1.442991383	340.3378378	0.009919885	14	0.007606821	-0.750466787
C. grandiflora At2g	g23170 36	123.3648649	0.050824219	26	0.050784957	-0.002671947	407.6351351	0.005915851	10	0.003247535	-1.374013943
C. grandiflora At2g	g26730 38	132.1538462	0.052228182	29	0.050471371	-0.116404366	425.8461538	0.0016767	3	0.001299396	-0.496927108
C. grandiflora At2g	g28050 32	115.4848485	0.025801691	12	0.025226742	-0.071730967	394.5151515	0.00566462	9	0.001998165	-1.98260169
C. grandiflora At2g	g44900 36	123.1711712	0.007831407	4	0.005940887	-0.59129855	386.8288288	0.000623405	1	0.000143618	-1.133212888
C. grandiflora At2g	947430 38	125.5726496	0.005686079	3	0.005290132	-0.153773609	402.4273504	0.000591424	1	0.00067867	0.213763113
C. grandiflora At3g	g10340 36	135.3423423	0.040981043	23	0.035535988	-0.454237424	428.6576577	0.004500578	8	0.003036426	-0.948751959
C. grandiflora At3g	g23590 26	106.5061728	0.056591271	23	0.042207738	-0.923383112	313.4938272	0.005015551	6	0.002129842	-1.702992442
C. grandiflora At3g	g26650 38	93.73504274	0.012695644	5	0.024174554	2.328116714	287.2649573	0	0	0	0
C. grandiflora At3g	944530 38	114.4059829	0.018723218	9	0.018065981	-0.103660344	356.5940171	0.005339525	8	0.003219172	-1.144812013
C. grandiflora At3g	960750 22	145.6086957	0.003767926	2	0.002318971	-0.871247959	448.3913043	0.00061179	1	0.000202745	-1.162402043
C. grandiflora At3g	g62890 38	103.8504274	0.022918091	10	0.010738718	-1.601213668	352.1495726	0.007434508	11	0.003728372	-1.527871009
C. grandiflora At4g	908840 28	35.71264368	0.021586739	3	0.009555995	-1.337838808	123.2873563	0.00625303	3	0.004699307	-0.596460285
C. grandiflora At4g	g14190 30	91.87096774	0.049455853	18	0.045741315	-0.258696163	301.1290323	0.015926651	19	0.011481694	-0.967102366
C. grandiflora At4g	g14370 22	127.0652174	0.034542441	16	0.036930962	0.25117467	451.9347826	0.013960848	23	0.00758643	-1.718251797
C. grandiflora At4g	38160 34	132	0.012969655	7	0.007778318	-1.148619662	429	0.001710284	3	0.001337937	-0.494978031
C. grandiflora At5g	g04190 32	127.0707071	0.019540986	10	0.018103332	-0.229741211	412.9292929	0.010824024	18	0.008012189	-0.883634204
C. grandiflora At5g	g20280 20	112.9603175	0.044915357	18	0.040815451	-0.343415808	373.0396825	0	0	0	0
C. grandiflora At5g	g41920 30	125.0967742	0.048427116	24	0.050627471	0.161166801	390.9032258	0.005165879	8	0.005786775	0.365120611
C. grandiflora At5g	943670 32	112.5656566	0.02205901	10	0.028746664	0.946713864	322.4343434	0.001540212	2	0.000737835	-1.046838824
C. grandiflora At5g	g51670 36	129.6936937	0.044625309	24	0.05319004	0.658884766	407.3063063	0.004144439	7	0.001340592	-1.916647035
C. grandiflora At5g	353020 34	64.30952381	0.049439308	13	0.080853398	2.045386197	241.6904762	0.020238335	20	0.033977844	2.310606856
C. grandiflora At5g	966280 30	135.1505376	0.013073857	7	0.010971163	-0.47519625	395.8494624	0.001912999	3	0.000505243	-1.731782748
C. rubella At1g	g01040 13	120.047619	0	0	0	0	419.952381	0	0	0	0
C. rubella At1g	g03560 12	128.1538462	0.01033568	4	0.012768744	0.82792558	459.8461538	0.001440218	2	0.001779251	0.687881658
C. rubella At1g	g04650 14	149.5	0	0	0	0	477.5	0	0	0	0
C. rubella Atig	JU6520 14	114.7444444	0.002/4045/	1	0.001245003	-1.155241342	401.2555556	0	0	0	0
C. rubella Atig	JU6530 14	112.5/////8	0	0	0	0	442.4222222	0	0	0	0
C. rubella Attg	11050 12	139.6410256	0 026721261	10	0 029271600	0	451.3589/44	0 001702226	0	0	0 126977209
C. rubella Attg	15240 14	120.5952561	0.020721501	10	0.056271099	1.720025512	409 6222222	0.001793220	2	0.001712255	-0.120877208
C. rubella Atig	21020 14	109 2111111	0 002005014	1	0 002/27228	-0 2/1/282/2	217 7999990	0 0009895	1	0 00082001	-0 241428242
C. rubella Atig	159720 14	108.2111111	0.002303314	1	0.002437238	1 212185563	/19 9777777	0.0009895	0	0.00082991	0
Crubella Atig	162390 13	174 3928571	0.002750472	3	0.00433401	-1 652312061	466 6071429	0 002071851	3	0 000989137	-1 652312061
C rubella At1g	162520 14	129 7333333	0.048476698	20	0.058446179	0.859675381	416 2666667	0.001510821	2	0.002455104	1 695975145
C rubella At1g	165450 12	118 3846154	0	0	0	0	388 6153846	0	0	0	0
C rubella At1g	168530 14	135 7888889	0	0	0	0	443 2111111	0	0	0	0
C rubella At1g	172390 12	115 6794872	0 005725117	2	0 004060331	-0 849714979	409 3205128	0 002426993	3	0 001998878	-0 578636747
C. rubella At1g	74600 13	121.6309524	0.013246912	5	0.022135054	2,392106459	406.3690476	0.002378972	3	0.003975166	2,121451886
C. rubella At10	78850 14	105,5444444	0.002979334	1	0.001353526	-1,155241342	344,4555556	0	0	0	0
C. rubella At2n	23170 14	122.6333333	0	0	0	0	408,3666667	0	0	0	0
C. rubella At20	26730 13	132.202381	0.004875054	2	0.002327434	-1.468005781	425.797619	0	0	0	0
C. rubella At2a	, 28050 14	115.4222222	0.005448729	2	0.002475384	-1.48074498	394.5777778	0.001593867	2	0.001838103	0.415804348
C. rubella At2a	g44900 12	123.6923077	0	0	0	0	386.3076923	0	0	0	0
C. rubella At2q	947430 14	126.4222222	0.002487317	1	0.002086154	-0.341438343	404.5777778	0	0	0	0
C. rubella At3a	g10340 13	135.6190476	0	0	0	0	428.3809524	0	0	0	0
C. rubella At3g	g23590 11	106.5833333	0.01921973	6	0.024905821	1.171200707	313.4166667	0	0	0	0

PNAS PNAS

		Sample	Synonymous	Theta	S	π	Tajima's D	Replacement	Theta	S	π	Tajima's D
Species	Locus	size	sites	synonymous	synonymous	synonymous	synonymous	sites	replacement	replacement	replacement	replacement
C. rubella	At3g26650	14	94.02222222	0	0	0	0	286.9777778	0.001095737	1	0.001531688	0.842275109
C. rubella	At3g44530	14	114.7888889	0.008218187	3	0.011487883	1.217964186	356.2111111	0.003531077	4	0.004103012	0.533557751
C. rubella	At3g60750	5	145.444444	0	0	0	0	448.5555556	0	0	0	0
C. rubella	At3g62890	11	104.375	0	0	0	0	351.625	0.00097097	1	0.00051708	-1.128501595
C. rubella	At4g08840	7	35.35416667	0.03463495	3	0.029632124	-0.65405158	123.6458333	0.006602135	2	0.006161993	-0.27492444
C. rubella	At4g14190	13	92.73809524	0.006949612	2	0.006635726	-0.126877208	300.2619048	0	0	0	0
C. rubella	At4g14370	14	127.1222222	0.012368104	5	0.005618889	-1.889327875	451.8777778	0.00626291	9	0.003623464	-1.617340049
C. rubella	At4g38160	14	131.4444444	0.007176846	3	0.003260476	-1.670526133	429.5555556	0.000732041	1	0.00033257	-1.155241342
C. rubella	At5g04190	14	127.2333333	0	0	0	0	412.7666667	0.000761816	1	0.000346097	-1.155241342
C. rubella	At5g20280	12	112.6025641	0	0	0	0	373.3974359	0	0	0	0
C. rubella	At5g41920	13	124.6309524	0	0	0	0	391.3690476	0.000823384	1	0.000393097	-1.149147105
C. rubella	At5g43670	12	113	0.011721744	4	0.014481094	0.82792558	322	0.001028383	1	0.001270469	0.540554689
C. rubella	At5g51670	14	129.5555556	0.007281483	3	0.007888338	0.25513408	407.4444444	0.000771767	1	0.001078823	0.842275109
C. rubella	At5g53020	14	64.33333333	0	0	0	0	241.6666667	0	0	0	0
C. rubella	At5g66280	13	136.1785714	0	0	0	0	397.8214286	0	0	0	0

PNAS PNAS

Table S6. Modes of parameter estimates under a range of MIMAR models using summaries of the data that do not rely on outgroup inference, with 90% HPD intervals in parentheses

Model	$N_{e(Cg)}^{*}$	N _{e(Cr)} *	N _{e(A)} *	M _{Cg-Cr} [†]	M _{Cr-Cg} [‡]	T [§]
1. Ancestral size constrained, no migration	503.8 [¶] (442.6, 576.0)	2.4 (0.3, 11.1)	503.8 [¶] (442.6, 576.0)	-	-	9.5 (1.2, 37.8)
2. Ancestral size constrained, symmetrical migration	497.1 [¶] (378.3, 824)	15.2 (5.6, 27.6)	497.1 [¶] (378.3, 824)	3.5 [¶] (1.1, 10.7)	3.5 [¶] (1.1, 10.7)	7.5 (0.6, 3673.0)
3. Ancestral size constrained, asymmetrical migration	493.8 [¶] (421.7, 594.0)	0.4 (0.1, 8.8)	493.8 [¶] (421.7, 594.0)	1.9 (0.011, 5.5)	51.7 (7.7, 376.1)	17.5 (2.5,3608.8)
4. Ancestral size unconstrained, asymmetrical migration	532.5 (417.6, 893.6)	0.6 (0.138, 8.6)	72.5 (16.7, 584,8)	1.9 (0.01, 8.6)	81.0 (10.5, 400.8)	1362.5 (1.94, 3273.6)

*Effective population size (effective number of individuals \times 10⁻³) for *C. rubella* (*Cr*), *C. grandiflora* (*Cg*), and their ancestor (*A*).

[†]Migration rate $(4N_em)$ from C. grandiflora to C. rubella. [‡]Migration rate $(4N_em)$ from C. rubella to C. grandiflora.

[§]Time (ka) of the split of *C. rubella* and *C. grandiflora*.

[¶]Constrained.

PNAS PNAS