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SI Methods
Gene Expression Analysis. Statistical modeling representing acti-
vation of the individual transcription factors (NKX2–8, PAX9,
and TTF-1) was performed using metagene construction and
binary prediction analysis, as described previously (1–3). Spe-
cifically, the gene expression data of the individual transfectants
were used to serve as a training set to create a signature that
distinguished the transfectant group from the control/normal
group in a supervised analysis using Bayesian regression meth-
odologies to develop a probit model predictive of transcription
factor expression. This method generates a model in which a
restricted set of differentially expressed genes could distinguish
the comparison groups and a signature is obtained that summa-
rizes the constituent of genes as a single expression profile and
is described as the top principal components of that set of genes.

Gene expression signatures that reflect the activity of a given
transcription factor (TTF-1, NKX2–8, or PAX9) were then
applied to a clinically annotated data set of 91 tumor samples
(GSE3141) to predict patterns of transcription factor activation.
When predicting the activation of transcription factors across the
NSCLC samples, gene selection and identification based on the
training data set were used to compute metagene values using
the principal components of the training data and tumor ex-
pression data. The metagene is defined as the dominant singular
factor (principal component) that represents the dominant av-
erage pattern of expression for a cluster of genes. Using the
training set of expression vectors (of values across metagenes)
described above to represent 2 biological states, a binary probit
regression model of predictive probabilities for each of the 2
states (transcription factor activation or not) for each case was
estimated using Bayesian methods (4). To prevent overfitting of
the model, a leave-one-out cross-validation analysis was per-
formed to test the stability and predictive capability of the model.
Predictions of transcription factor pathway activation within the
tumor samples were evaluated using methods previously de-
scribed (5) to produce estimated relative probabilities and
associated measures of uncertainty of transcription factor acti-
vation across the validation set. A priori to survival analyses, an
estimated probability of 0.5 was classified as high probability of
transcription factor activation and a probability of

Gene Expression Levels of NKX2–8, TTF-1, and PAX9. Gene expression
levels of TTF-1 (Probe IDs 207771�at, 207772�s�at), NKX2–8
(Probe ID 207451�at), and PAX9 (207059�at) were determined
using the annotated Probe ID as specified (Affymetrix) and
determined on a clinically annotated data set of 91 tumor
samples (GSE3141). The mean values of the expression levels for
NKX2–8, TTF-1, and PAX9 were determined and samples with
a gene expression level above the mean were identified as having
high expression of a transcription factor and samples with a gene

expression level below the mean were identified as having low
expression of a transcription factor.

Cross-Platform Analysis. To map the probe sets across different
generations of Affymetrix gene chip array, we used an in-house
program, Chip Comparer (http://tenero.duhs.duke.edu/
genearray/perl/chip/chipcomparer.pl). First, each probe set ID in
the specified Affymetrix gene chips was mapped to the corre-
sponding LocusLink (EntrezGene) ID by parsing local copies of
the LocusLink and UniGene databases to identify the GenBank
accession numbers and LocusLink IDs associated with that
probe set. Second, probe sets from different gene chips sharing
the same LocusLink ID were matched, as described previously
(1).

Univariate and Multivariate Analyses. In an effort to fully understand
the prognostic significance of clusters representing coactivation of
the transcription factors on survival in patients with early stage
NSCLC, univariate and multivariate analyses were performed with
the use of the Cox proportional hazards model. Multivariate models
include continuous covariates for age, gender, and tumor size and
dichotomous covariates for lymph node status and histologic sub-
type. Hazard ratios and 95% confidence intervals are reported with
respect to the hierarchical cluster with lowest level of survival.
P-values are based on likelihood-ratio tests, and analyses were
performed using the statistical package R (6).

Lung Cancer Cell Lines and Drug Sensitivity Assays. The NSCLC cell
lines (H522, H1703, H23, H1568, H661, H2073, H2085, H838,
H520, H1650, H2030, H226, H1573, H1437, A549, H1563, H1395,
H1651, H1944, H460, H1666, H1838, H2170, H2126, H2405,
H1793, H358, H1373, H2291, H322M, HCC2935, H596, H441,
H2122, H1975, H647, H2228, and HCC4006) were grown as
recommended by the supplier (ATCC). These cell lines were used
in drug sensitivity assays to examine the association between
patterns of coactivation of transcription factors and sensitivity to
cisplatin, using cell proliferation experiments as described previ-
ously (7). Briefly, optimal cell number and linear range of drug
concentration were first determined for each cell line and drug.
Cells were plated in drug-free media at a concentration of 3,000–
7,000 cells/well in tissue-culture-treated 96-well plates. Five repli-
cate wells were plated for each planned drug concentration. Control
wells were additionally plated containing cells in growth media
without drug and wells with growth media without cells. Plates were
incubated for 24 h at 37 °C. After 24 h, each cell line was exposed
to a series of increasing cisplatin (Duke University pharmacy
storeroom) concentrations and cell cytotoxicity was assessed with
propidium iodide (Sigma-Aldrich) staining at days 0 and 5 (FLU-
Ostar Optima, BMG Labtech). EC50 (GraphPad Prism, GraphPad
Software) for cisplatin was defined for each cell line in 2–5
independent replicate experiments.
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Fig. S1. Kaplan–Meier survival analysis of patients with lung cancer differentiated by gene expression level of individual transcription factors (TTF-1, NKX2–8,
or PAX9) shows no significant difference in survival.
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Fig. S2. Kaplan–Meier survival analysis of patients with lung cancer differentiated by combinatory gene expression level of transcription factors (high or low
NKX2–8/TTF-1) shows no significant difference in survival.
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Fig. S3. Prediction of TTF-1, NKX2–8, and PAX9 pathway status in a mouse lung cancer model. A set of previously published mouse Affymetrix expression data
from normal and lung tumor tissue with spontaneous activating KRAS mutations was used to validate the oncogenic relevance of TTF-1/NKX2–8 coactivation.
The predicted probabilities of pathway activity in the normal tissue and tumors are shown (red, high level of activation; blue, low level of activation).
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Fig. S4. Kaplan–Meier survival analysis of patients with lung cancer differentiated by activation of individual transcription factors (TTF-1, NKX2–8, or PAX9)
shows no significant difference in survival.
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Fig. S5. Kaplan–Meier analysis demonstrating that the survival pattern of the poor prognosis cluster (NKX2–8 and TTF-1 coactivated) of patients with early
NSCLC mimics the survival pattern of patients with stage IV/advanced disease.
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Fig. S6. (A) Box and whisker plots of the probability of survival plotted against the probabilities of samples having high activation of TTF-1 and NKX2–8 (cluster
1) and samples having high activation of TTF-1 and PAX9 (cluster 3) on the GSE4573 data set. (B) Kaplan–Meier survival analysis on the GSE4573 data set shows
that cluster 1 has a poorer prognosis than cluster 3
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Fig. S7. (A) Box and whisker plots of the probability of survival plotted against the probabilities of samples having high activation of TTF-1 and NKX2–8 (cluster
1) and samples having high activation of NKX2–8 alone (cluster 2) on the GSE3593 data set. (B) Kaplan–Meier survival analysis on the GSE3593 data set shows
that cluster 1 has a poorer prognosis than cluster 2.
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Fig. S8. Linear regression analysis demonstrates a significant relationship between the EC50 of pemetrexed and the predicted probability of transcription factor
coactivation of NKX2–8 and TTF-1.
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Table S1. Gene annotation (GATHER) of the genes constituting the NKX2–8, PAX9, and TTF-1 signatures

No. KEGG pathway annotation P-value FDR

NKX2–8 signature
1 path:hsa04010: MAPK signaling pathway 0.04 0.04
2 path:hsa04810: regulation of actin cytoskeleton 0.06 0.05
3 path:hsa04020: calcium signaling pathway 0.08 0.05
4 path:mmu04510: focal adhesion 0.1 0.06
5 path:hsa04070: phosphatidylinositol signaling system 0.29 0.21
6 path:hsa04080: neuroactive ligand-receptor interaction 0.3 0.21
7 path:hsa04620: Toll-like receptor signaling pathway 0.33 0.21
8 path:hsa00380: tryptophan metabolism 0.34 0.21
9 path:hsa04210: apoptosis 0.34 0.21
10 path:mmu00230: purine metabolism 0.38 0.22
11 path:hsa04350: TGF-� signaling pathway 0.4 0.22
12 path:hsa00562: inositol phosphate metabolism 0.46 0.25
13 path:hsa04630: Jak-STAT signaling pathway 0.49 0.25
14 path:rno04080: neuroactive ligand–receptor interaction 0.49 0.25

PAX9 signature
1 path:hsa04020: calcium signaling pathway 0.04 0.04
2 path:hsa04630: Jak-STAT signaling pathway 0.08 0.07
3 path:hsa04310: Wnt signaling pathway 0.1 0.08
4 path:hsa00190: oxidative phosphorylation 0.14 0.09
5 path:hsa04080: neuroactive ligand–receptor interaction 0.17 0.11
6 path:mmu00190: oxidative phosphorylation 0.23 0.15
7 path:mmu00230: purine metabolism 0.25 0.15
8 path:hsa04110: cell cycle 0.24 0.15
9 path:hsa00380: tryptophan metabolism 0.26 0.15
10 path:hsa04540: gap junction 0.27 0.15
11 path:mmu04080: neuroactive ligand–receptor interaction 0.3 0.17
12 path:hsa04350: TGF-� signaling pathway 0.31 0.17
13 path:mmu04060: cytokine–cytokine receptor interaction 0.44 0.25
14 path:mmu04070: phosphatidylinositol signaling system 0.43 0.25
15 path:hsa04910: insulin signaling pathway 0.42 0.25
16 path:hsa04610: complement and coagulation cascades 0.42 0.25

TTF-1 signature
1 path:rno04510: focal adhesion 0.01 0.01
2 path:hsa00190: oxidative phosphorylation 0.03 0.02
3 path:rno04010: MAPK signaling pathway 0.08 0.07
4 path:mmu04620: Toll-like receptor signaling pathway 0.08 0.07
5 path:mmu04060: cytokine–cytokine receptor interaction 0.12 0.09
6 path:rno04310: Wnt signaling pathway 0.11 0.09
7 path:hsa04810: regulation of actin cytoskeleton 0.19 0.14
8 path:rno04210: apoptosis 0.18 0.14
9 path:rno04512: ECM–receptor interaction 0.19 0.14
10 path:hsa00071: fatty acid metabolism 0.19 0.14
11 path:hsa00010: glycolysis/gluconeogenesis 0.21 0.14
12 path:hsa00350: tyrosine metabolism 0.22 0.15
13 path:hsa00500: starch and sucrose metabolism 0.22 0.15
14 path:rno04910: insulin signaling pathway 0.26 0.18
15 path:hsa04110: cell cycle 0.3 0.18
16 path:mmu04340: Hedgehog signaling pathway 0.29 0.18
17 path:mmu00010: glycolysis/gluconeogenesis 0.3 0.18
18 path:hsa04340: Hedgehog signaling pathway 0.26 0.18
19 path:hsa00330: arginine and proline metabolism 0.29 0.18
20 path:mmu04020: calcium signaling pathway 0.34 0.19
21 path:hsa00280: valine, leucine, and isoleucine degradation 0.35 0.19
22 path:mmu04530: tight junction 0.45 0.22
23 path:rno04330: Notch signaling pathway 0.43 0.22
24 path:hsa04630: Jak-STAT signaling pathway 0.48 0.22
25 path:hsa04350: TGF-� signaling pathway 0.41 0.22
26 path:mmu00650: butanoate metabolism 0.46 0.22
27 path:hsa00620: pyruvate metabolism 0.41 0.22
28 path:rno00564: glycerophospholipid metabolism 0.5 0.23

FDR, false discovery rate.
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Table S2. Common pathways exist between 3 independent NSCLC prognostic models

NKX2–8 signature: KEGG pathway annotation Lu et al. (2006) Beer et al. (2002) Potti et al. (2006)

1 path:hsa04010: MAPK signaling pathway Present Present Present
2 path:hsa04810: regulation of actin cytoskeleton Present Present Present
3 path:hsa04020: calcium signaling pathway
4 path:mmu04510: focal adhesion Present Present Present
5 path:hsa04070: phosphatidylinositol signaling

system
Present Present

6 path:hsa04080: neuroactive ligand–receptor
interaction

7 path:hsa04620: Toll-like receptor signaling
pathway

8 path:hsa00380: tryptophan metabolism
9 path:hsa04210: apoptosis Present Present Present
10 path:mmu00230: purine metabolism Present
11 path:hsa04350: TGF-� signaling pathway Present
12 path:hsa00562: inositol phosphate metabolism Present Present
13 path:hsa04630: Jak-STAT signaling pathway Present Present Present

TTF-1 signature: KEGG pathway annotation
1 path:rno04510: focal adhesion Present Present Present
2 path:hsa00190: oxidative phosphorylation Present Present
3 path:rno04010: MAPK signaling pathway Present Present Present
4 path:mmu04620: Toll-like receptor signaling

pathway
5 path:mmu04060: cytokine–cytokine interaction Present Present Present
6 path:rno04310: Wnt signaling pathway Present Present
7 path:hsa04810: regulation of actin cytoskeleton Present Present Present
8 path:rno04210: apoptosis Present Present Present
9 path:rno04512: ECM–receptor interaction Present
10 path:hsa00071: fatty acid metabolism
11 path:hsa00010: glycolysis/gluconeogenesis Present Present
12 path:hsa00350: tyrosine metabolism
13 path:hsa00500: starch and sucrose metabolism Present
14 path:rno04910: insulin signaling pathway Present
15 path:hsa04110: cell cycle Present Present Present
16 path:mmu04340: Hedgehog signaling pathway
17 path:mmu00010: glycolysis/gluconeogenesis Present Present
18 path:hsa04340: Hedgehog signaling pathway
19 path:hsa00330: arginine and proline metabolism Present
20 path:mmu04020: calcium signaling pathway
21 path:hsa00280: valine, leucine, and isoleucine

degradation
22 path:mmu04530: tight junction Present Present Present
23 path:rno04330: Notch signaling pathway Present
24 path:hsa04630: Jak-STAT signaling pathway Present Present Present
25 path:hsa04350: TGF-� signaling pathway Present
26 path:mmu00650: butanoate metabolism
27 path:hsa00620: pyruvate metabolism
28 path:rno00564: glycerophospholipid metabolism Present Present
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Table S3. Demographic and clinical characteristics by data sets
used in the analyses

Characteristics

Discovery data set: Validation data sets

GSE3141 GSE3593 GSE4573

Sample size 91 84 130
Age (years)
Median 67 66 67
Range 32–83 33–82 42–91

Sex (%)
Male 56 (62) 56 (67) 82 (63)
Female 35 (38) 28 (33) 48 (37)

Stage (%)
I 67 (74) 52 (62) 73 (56)
II 18 (20) 15 (18) 34 (26)
III 6 (6) 17 (20) 23 (18)

Histology (%)
Adenocarcinoma 45 (49) 84 (100) 0 (0)
Squamous 46 (51) 0 (0) 130 (100)

Survival (months)
Mean 35.4 52.3 45.9
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