Direct and Quantitative Characterization of Dynamic Ligand Exchange between Coordination-Driven Self-Assembled Supramolecular Polygons

Yao-Rong Zheng* and Peter J. Stang*

Department of Chemistry, University of Utah, 315 South 1400 East, RM, 2020, Salt

Lake City, Utah, 84112.

E-mail: zheng@chem.utah.edu; stang@chem.utah.edu

Table of Contents

Experimental details of dynamic ligand exchange between supramolecular rectangles
(5a and 5b) and triangles (6a and 6b)
ESI-MS spectra of mixtures of rectangles (5a and 5b) and triangles (6a and 6b)S2
Multinuclear NMR (¹ P{ ¹ H} and Partial ¹ H) spectra mixtures of rectangles (5a and
5b), triangles (6a and 6b), and rectangle 5a and triangle 6b S5
Experimental details and kinetic analysis of dynamic ligand exchange between
rectangles (5a and 5b)

Methods and Materials. 0° and 60° organoplatinum acceptor 3^{1} and 4^{2} as well as the rectangles¹ (5a and 5b) and triangles² (6a and 6b) were prepared according to literature procedures. 4,4'-dipyridyl-*d*₈ 2 was purchased from C/D/N Isotope Inc. Deuterated acetone and water was purchased from Cambridge Isotope Laboratory (Andover, MA). NMR spectra were recorded on a Varian Unity 300 spectrometer. The ¹H NMR chemical shifts are reported relative to residual solvent signals, and ³¹P NMR resonances are referenced to an external unlocked sample of 85% H₃PO₄ (δ 0.0). Mass spectra were recorded on a MassLynx operating system.

General Procedure for the Dynamic Ligand Exchange Experiment. Individually prepared rectangles (5a and 5b) and triangles (6a and 6b) were mixed in 1:1 ([5a]₀= 2.14 mM and [5b]₀ =2.14 mM), 1:1 ([6a]₀ =1.43 mM and [6b]₀ =1.43 mM), and 3:2 ([5a]₀= 2.14 mM and [6b]₀ =1.43 mM) ratios in the aqueous acetone solution (Acetone- d_6/D_2O 1:1) to carry out the study of ligand exchange between the same (5a + 5b as well as 6a + 6b) and different (5a + 6b) types of polygons. Upon heating at 64 ± 1 °C, the mixtures were periodically transferred for ESI-MS and NMR analysis.

Figure S1. Calculated (blue) and experimental (red) ESI-MS spectra (Acetone- d_6/D_2O 1:1) (a) individually prepared **5b**, (b) individually prepared **5a**, (c) **5c** (calculated) (d) initial mixture of **5a** and **5b**, and (e) equilibrated mixture of **5a**, **5b**, and **5c**.

Figure S2. Calculated (blue) and experimental (red) ESI-MS spectra (Acetone- d_6/D_2O 1:1) (a) individually prepared **6b**, (b) individually prepared **6a**, (c) **6c** (calculated), (d) **6d** (calculated), (e) initial mixture of **6a** and **6b**, and (f) equilibrated mixture of **6a**, **6b**, **6c**, and **6d**.

Figure S3. ESI-MS spectra (Acetone- d_6/D_2O 1:1) (a) and (c) initial mixture of 5a and 6b an (b) and (d) equilibrated mixture of 5a, 5b, 5c, 6a, 6b, 6c, and 6d.

Figure S4. ¹H and ³¹P{¹H} NMR spectra of (a) individually prepared **5b**, (b) individually prepared **5a**, (c) initial mixture of **5a** and **5b**, and (d) equilibrated mixture of **5a**, **5b**, and **5c**.

Figure S5. ¹H and ³¹P{¹H} NMR spectra of (a) individually prepared **6b**, (b) individually prepared **6a**, (c) initial mixture of **6a** and **6b**, and (d) equilibrated mixture of **6a**, **6b**, **6c**, and **6d**.

Figure S6. ¹H and ³¹P{¹H} NMR spectra of (a) individually prepared **5b**, (b) individually prepared **5a**, (c) individually prepared **6b**, (d) individually prepared **6a**, (e) initial mixture of **5a** and **6b**, and (f) equilibrated mixture of **5a**, **5b**, **5c**, **6a**, **6b**, **6c**, and **6d**.

Kinetic analysis of ESI-MS data of the dynamic exchange between rectangles 5a and 5b.

Figure S7. ESI-MS spectra (Acetone- d_6/D_2O 1:1) for dynamic ligand exchange between **5a** and **5b** recorded at different time intervals: (a) 20 h, (b) 43 h, (c) 66 h, (d) 89 h, (e) 161 h, and (f) 206 h.

Table S1. Kinetic data extracted from ESI-MS spectra (Figure S7) of the dynamic exchange between rectangles 5a and 5b.

t (h)	$[5c]_t / [5a]_t$	$[5a]_0 / [5a]_t$	$Ln([5a]_0 / [5a]_t)$
0	0.000	1.00	0. 000
20	0. 133	1.07	0.064
43	0. 210	1.11	0. 100
66	0. 373	1.19	0. 171
89	0. 470	1.24	0. 211
161	0. 978	1.49	0. 398
206	1. 24	1.62	0, 482

 $[5c]_t / [5a]_t$ is determined by the ratio of the intensity of peaks for 5c (820.0) and 5a (817.3) in the ESI-MS spectra recorded at specific time (t) (Figure S7).

 $\therefore \text{Rectangle } (5a) + \text{Rectangle } (5b) \leftrightarrows 2 \text{ Rectangle } (5c)$

 $\therefore [5a]_0 = [5a]_t + [5c]_t /2$

 \therefore [5a]₀ / [5a]_t = 1 + ([5c]_t / [5a]_t) /2

The apparent rate constant k for the dynamic exchange between rectangles **5a** and **5b** was determined by fitting the data (Table S1) to the first-order kinetic equation:

$$Ln([5a]_0 / [5a]_t) = kt$$

Reference: (1) Kuehl, C. J.; Huang, S. D.; Stang, P. J. *J. Am. Chem. Soc.* **2001**, *123*, 9634. (2) Kryschenko, Y. K.; Seidel, S. R.; Arif, A. M.; Stang, P. J. J. Am. Chem. Soc. 2003, 125, 5193.