Intermolecular Silacarbonyl Ylide Cycloadditions: A Direct Pathway to Oxasilacyclopentenes

Laura E. Bourque and K. A. Woerpel*

Department of Chemistry, University of California, Irvine, California, 92697-2025

Supporting Information

Contents:

I.	Silacarbonyl Cycloadditions	S-2
II.	Silacyclopropene Control Experiment	S-5
III.	Oxasilacyclopentene Functionalization	S-5
IV.	Stereochemical Proofs of Dioxasilacyclopentanes	S-8
V.	References	S-8
VI.	Selected Spectra	S-9

Experimental Section

General. ¹H NMR and ¹³C NMR spectra were recorded at room temperature using Bruker DRX 400, DRX 500, or DRX 600 spectrometers, as indicated. The data are reported as follows: chemical shift in ppm from an internal tetramethylsilane standard on the δ scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. Due to difficulties with purification for certain products, only characteristic peaks are listed in tabulated ¹H NMR spectroscopic data. High resolution mass spectra was acquired on a VG analytical 7070E or Fisions Autospec spectrometer, and were obtained by peak matching. Microanalyses were performed by Atlantic Microlabs, Norcross, GA. Analytical thin layer chromatography was performed on EM reagents 0.25 mm silica gel 60-F plates. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system on EM reagents silica gel (SiO₂) 60 (230-400). Silacyclopropanes were stored and manipulated in an Innovative Technologies nitrogen dry box. All reactions were performed under an atmosphere of nitrogen or argon in glassware that had been flame-dried under a stream of nitrogen or under vacuum. Solvents were distilled or filtered through alumina before use. Sodium hydride and potassium hydride were used dry and weighed out in a nitrogen dry box.

I. Silacarbonyl Cycloadditions

Ph Ph 7

Dioxasilacyclopentane 7. To a solution of benzaldehyde (0.212 g, 2.00 mmol) in 6.7 mL of toluene was added silacyclopropane **6** (0.224 g, 1.00 mmol). AgOTf (0.003 g, 0.01 mmol) was then added. The brown solution was maintained at ambient temperature for 15 min, at which point the mixture was concentrated *in vacuo*. The resultant yellow oil as purified by flash chromatography (98:2 hexanes:EtOAc) to afford **7** (0.255 g, 72%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.30 (m, 10H), 4.80 (s, 2H), 1.26 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 139.0, 128.3, 128.1, 126.8, 84.6, 27.4, 21.6; IR (thin film) 2934, 2859, 1474, 1209, 1024, 853 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₂H₃₀O₂SiNa (M + Na)⁺ 355.2093, found 355.2101. Anal. Calcd for C₂₂H₃₀O₂Si: C, 74.53; H, 8.53. Found: C, 74.08; H, 8.55.

Dioxasilacyclopentane acetal 9. To a solution of *n*-butyraldehyde (0.144 g, 2.00 mmol) in 6.7 mL of toluene was added silacyclopropane **6** (0.224 g, 1.00 mmol). CuBr₂ (0.011 g, 0.05 mmol) was then added. The brown solution was maintained at ambient temperature for 12 h, at which point the mixture was concentrated *in vacuo*. The resultant yellow oil as purified by flash chromatography (98:2 hexanes:EtOAc) to afford **9** (0.253 g, 89%) as a colorless oil: ¹H NMR (500 MHz, CDCl₃) δ 4.87 (t, *J* = 4.0, 1H), 3.52–3.55 (m, 1H), 1.94–2.09 (m, 1H), 1.70–1.76 (m, 1H), 1.59–1.67 (m, 3H), 1.45–1.51 (m, 2H), 1.35–1.41 (m, 1H), 1.08 (s, 9H), 1.07 (s, 9H), 0.93–0.99 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 102.7, 70.0, 38.6, 33.4, 28.3, 27.9, 22.1, 20.6, 20.5, 17.8, 14.1; IR (thin film) 2935, 2860, 1473, 1365, 1009, 825 cm⁻¹; HRMS (APCI) *m* / *z* calcd for C₁₆H₃₅O₂Si (M + H)⁺ 287.2406, found 287.2401. Anal. Calcd for C₁₆H₃₄O₂Si: C, 67.07; H, 11.96. Found: C, 66.88; H, 11.92.

11

Representative procedure for the synthesis of oxasilacyclopentenes (oxasilacyclopentene 11). To a solution of benzaldehyde (0.109 g, 1.00 mmol) and diethyl acetylenedicarboxylate (0.170 g, 1.00 mmol) in 6.7 mL of toluene was added silacyclopropane 6 (0.247 g, 1.10 mmol). AgOTf (0.003 g, 0.01 mmol) was then added. The brown solution was maintained at ambient temperature for 15 min, at which point the mixture was concentrated *in vacuo*. The resultant yellow oil as purified by flash chromatography

(95:5 hexanes:EtOAc) to afford **11** (0.356 g, 85%) as a yellow oil: ¹H NMR (500 MHz, CDCl₃) δ 7.27–7.38 (m, 5H), 5.92 (s, 1H), 4.28–4.31 (m, 2H), 4.03–4.07 (m, 2H), 1.34 (t, *J* = 7.2, 3H), 1.15 (s, 9H), 1.11 (s, 9H), 1.03 (t, *J* = 7.1, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 164.0, 154.9, 139.6, 139.4, 128.5, 128.4, 127.8, 84.8, 61.1, 61.0, 27.7, 27.2, 22.6, 21.0, 14.3, 13.8; IR (thin film) 3032, 2860, 1721, 1240, 1053, 825 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₃H₃₄O₅SiNa (M + Na)⁺ 441.2073, found 441.2077. Anal. Calcd for C₂₃H₃₄O₅Si: C, 65.99; H, 8.19. Found: C, 65.73; H, 8.29.

13a

Oxasilacyclopentene 13a. The representative procedure for the synthesis of oxasilacyclopentenes was followed using crotonaldehyde (0.035 g, 0.50 mmol), diethyl acetylenedicarboxylate (0.085 g, 0.50 mmol), silacyclopropane **6** (0.123 g, 0.55 mmol), AgOTf (0.002 g, 0.01 mmol), and 6.7 mL of toluene for 15 min. Purification by flash chromatography (95:5 hexanes:EtOAc) afforded **13a** (0.157 g, 82%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 5.82–5.90 (m, 1H), 5.42–5.47 (m, 1H), 5.32–5.34 (m, 1H), 4.21–4.28 (m, 4H), 1.72 (d, *J* = 6.6, 3H), 1.26–1.33 (m, 6H), 1.12 (s, 9H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 164.1, 155.0, 137.4, 130.1, 128.9, 83.7, 61.2, 60.9, 27.5, 27.1, 22.0, 20.7, 17.7, 14.2, 14.1; IR (thin film) 2936, 2862, 1732, 1257, 1038, 824 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₀H₃₄O₅SiNa (M + Na)⁺ 405.2073, found 405.2076.

13b

Oxasilacyclopentene 13b. The representative procedure for the synthesis of oxasilacyclopentenes was followed using ethyl formate (0.074 g, 1.00 mmol), diethyl acetylenedicarboxylate (0.170 g, 1.00 mmol), silacyclopropane **6** (0.247 g, 1.10 mmol), AgOTf (0.003 g, 0.01 mmol), and 6.7 mL of toluene for 15 min. Purification by flash chromatography (95:5 hexanes:EtOAc) afforded **13b** (0.248 g, 64%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 5.82 (s, 1H), 4.18–4.32 (m, 4H), 3.87–3.95 (m, 1H), 3.65–3.73 (m, 1H), 1.28–1.33 (m, 6H), 1.24 (t, *J* = 7.0, 3H), 1.13 (s, 9H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 162.9, 148.8, 143.1, 103.0, 64.7, 61.2, 61.0, 27.4, 27.1, 21.0, 20.7, 15.3, 14.2, 14.0; IR (thin film) 2935, 2861, 1720, 1241, 1029, 825 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₁₉H₃₄O₆SiNa (M + Na)⁺ 409.2022, found 409.2020. Anal. Calcd for C₁₉H₃₄O₆Si: C, 59.04; H, 8.87. Found: C, 59.20; H, 8.88.

13c

Oxasilacyclopentene 13c. The representative procedure for the synthesis of oxasilacyclopentenes was followed using *N*-methyl-*N*-(benzyl)-formamide (0.111 g, 0.75 mmol), diethyl acetylenedicarboxylate (0.085 g, 0.50 mmol), silacyclopropane **6** (0.168 g, 0.75 mmol), AgOTf (0.003 g, 0.01 mmol), and 6.7 mL of toluene for 12 h at 50 °C. Purification by flash chromatography (95:5 hexanes:EtOAc) afforded **13c** (0.157 g, 68%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.30 (m, 5H), 5.63 (s, 1H), 4.19–4.24 (m, 2H), 4.25–4.33 (m, 2H), 3.85 (d, *J* = 13.6, 1H), 3.75 (d, *J* = 13.5, 1H), 2.31 (s, 3H), 1.27–1.32 (m, 6H), 1.18 (s, 9H), 1.02 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 166.0, 159.8, 139.2, 136.6, 128.2, 127.0, 97.0, 61.3, 61.0, 57.5, 36.7, 27.7, 27.2, 22.4, 21.5, 14.2, 14.1; IR (thin film) 2924, 2709, 1730, 1470, 1062, 821 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₅H₃₉NO₅SiNa (M + Na)⁺ 484.2495, found 484.2505. Anal. Calcd for C₂₅H₃₉NO₅Si: C, 65.04; H, 8.51. Found: C, 65.16; H, 8.72.

13d

Oxasilacyclopentene 13d. The representative procedure for the synthesis of oxasilacyclopentenes was followed using acetophenone (0.129 g, 1.00 mmol), diethyl acetylenedicarboxylate (0.170 g, 1.00 mmol), silacyclopropane **6** (0.247 g, 1.10 mmol), AgOTf (0.003 g, 0.01 mmol), and 6.7 mL of toluene for 3 h. Purification by flash chromatography (95:5 hexanes:EtOAc) afforded **13d** (0.333 g, 77%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.49 (m, 5H), 4.23–4.32 (m, 4H), 2.62 (s, 3H), 1.32 (t, *J* = 7.1, 3H), 1.27 (t, *J* = 7.1, 3H), 1.12 (s, 9H), 0.95 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 165.7, 159.4, 144.7, 138.4, 127.9, 127.3, 125.9, 88.2, 61.5, 60.9, 30.7, 28.0, 27.7, 21.3, 21.0, 14.3, 13.9; IR (thin film) 2969, 2860, 1720, 1240, 1037, 824 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₄H₃₆O₅SiNa (M + Na)⁺ 455.2230, found 455.2220. Anal. Calcd for C₂₄H₃₆O₅Si: C, 66.63; H, 8.39. Found: C, 66.61; H, 8.50.

13e

Oxasilacyclopentene 13e. The representative procedure for the synthesis of oxasilacyclopentenes was followed using methyl acrylate (0.344 g, 4.00 mmol), diethyl acetylenedicarboxylate (0.170 g, 1.00 mmol), silacyclopropane **6** (0.897 g, 4.00 mmol), AgOTf (0.003 g, 0.01 mmol), and 6.7 mL of toluene for 15 min. Purification by flash chromatography (95:5 hexanes:EtOAc) afforded **13e** (0.295 g, 74%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 6.15–6.22 (m, 1H), 5.66–5.71 (m, 1H), 5.43–5.46 (m,

1H), 4.21–4.28 (m, 4H), 3.28 (s, 3H), 1.28–1.32 (m, 6H), 1.14 (s, 9H), 1.08 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 163.7, 153.3, 139.8, 134.5, 119.4, 106.5, 61.5, 61.0, 49.7, 27.7, 27.6, 21.1, 21.0, 14.2, 14.0; IR (thin film) 2936, 2861, 1732, 1243, 1059, 824 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₀H₃₄O₆SiNa (M + Na)⁺ 421.2022, found 421.2019. Anal. Calcd for C₂₀H₃₄O₆Si: C, 60.27; H, 8.60. Found: C, 60.36; H, 8.76.

II. Silacyclopropene Control Experiment

Silacyclopropene control experiment. To a J. Young tube was added diethyl acetylenedicarboxylate (0.017 g, 0.10 mmol), silacyclopropane 6 (0.022 g, 0.10 mmol), AgOTf (0.038 mL of a 0.026 M solution in benzene, 1.0 µmol), and 0.7 mL of benzene- d_6 . The progress of the reaction was monitored by ²⁹Si NMR spectroscopy at ambient temperature. After 15 min, all starting material had disappeared and two new peaks had formed. Neither peaks were located in the silacyclopropene range³ (δ –71.7 to –65.3 ppm): ²⁹Si NMR (99.3 MHz, C₆D₆) δ 18.0, 4.8.

III. Oxasilacyclopentene functionalization

Oxasilacyclopentene 21. To a -78 °C solution of oxasilacyclopentene **13b** (0.210 g, 0.54 mmol) and SnBr₄ (0.475 g, 1.09 mmol) in 4.0 mL of CH₂Cl₂ was added allyltrimethylsilane (0.35 mL, 2.17 mmol). The reaction mixture was warmed to ambient temperature and maintained for 48 h. The solution was diluted with 15 mL of NaHCO₃. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 15 mL). The combined organic layers were washed with 15 mL of saturated aqueous NaCl, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resultant yellow oil was purified by flash chromatography (95:5 hexanes:EtOAc) to afford **21** (0.132 g, 64%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 5.89–5.99 (m, 1H), 5.08–5.14 (m, 2H), 4.95–4.98 (m, 1H), 4.20–4.29 (m, 4H), 2.56–2.58 (m, 1H), 2.27–2.30 (m, 1H), 1.29–1.32 (m, 6H), 1.10 (s, 9H), 1.02 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 168.0, 164.4, 155.5, 138.4, 134.7, 117.4, 82.2, 61.4, 60.9, 40.3, 27.6, 27.1, 22.1, 20.7, 14.2, 14.0; IR (thin film) 2935, 2860, 1719, 1239, 1054, 824 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₀H₃₄O₅SiNa (M + Na)⁺ 405.2073, found 405.2072. Anal. Calcd for C₂₀H₃₄O₅Si: C, 62.79; H, 8.96. Found: C, 62.77; H, 8.99.

Oxasilacyclopentene 22. To a -78 °C solution of oxasilacyclopentene **13e** (0.100 g, 0.25 mmol) and SnBr₄ (0.219 g, 0.50 mmol) in 2.0 mL of CH₂Cl₂ was added allyltrimethylsilane (0.16 mL, 1.00 mmol). The reaction mixture was warmed to ambient temperature and maintained for 12 h. The solution was diluted with 10 mL of NaHCO₃. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with 10 mL of saturated aqueous NaCl, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resultant yellow oil was purified by flash chromatography (95:5 hexanes:EtOAc) to afford **22** (0.051 g, 50%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 5.83–5.85 (m, 1H), 4.99–5.06 (m, 3H), 4.20–4.36 (m, 4H), 2.35–2.39 (m, 2H), 2.18–2.19 (m, 2H), 1.28–1.37 (m, 6H), 1.08 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 166.0, 155.0, 153.3, 138.3, 129.4, 114.9, 113.1, 61.7, 60.9, 33.2, 27.9, 27.8, 27.2, 25.3, 21.3, 14.2, 14.1; IR (thin film) 2935, 2861, 1738, 1239, 1090, 824 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₂H₃₇O₅Si (M + H)⁺ 409.2410, found 409.2404.

23

Diol 23. To a -78 °C solution of oxasilacyclopentene **11** (0.267 g, 0.64 mmol) in 5.0 mL of CH₂Cl₂ was added DIBAL–H (2.56 mL of a 1.00 M solution in hexanes, 2.56 mmol). The reaction mixture was warmed to ambient temperature and maintained for 12 h. The solution was diluted with 10 mL of H₂O and 10 mL NH₄Cl. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic layers were washed with 10 mL of saturated aqueous NaCl, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resultant yellow oil was purified by flash chromatography (50:50 hexanes:EtOAc) to afford **23** (0.159 g, 74%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.35 (m, 5H), 5.56 (s, 1H), 4.58–4.59 (m, 2H), 4.11 (d, *J* = 13.2, 1H), 3.92 (d, *J* = 13.0, 1H), 2.48–2.66 (m, 2H), 1.12 (s, 9H), 1.09 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.4, 141.1, 137.5, 128.7, 128.4, 128.1, 86.4, 60.3, 59.1, 28.3, 27.6, 22.3, 20.5; IR (thin film) 3326 (br), 2954, 2870, 1266, 1047, 823 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₁₉H₃₀O₃SiNa (M + Na)⁺ 357.1862, found 357.1862. Anal. Calcd for C₁₉H₃₀O₃Si: C, 68.22; H, 9.04. Found: C, 67.96; H, 9.17.

24

Lactone 24. To a solution of oxasilacyclopentene **11** (0.268 g, 0.64 mmol) in 4.3 mL of THF was added MeMgBr (1.37 mL of a 1.40 M solution in THF, 1.92 mmol). The colorless solution was maintained at ambient temperature for 3 h, at which point the mixture was diluted with 10 mL of NH₄Cl. The layers were separated, and the aqueous layer was extracted with hexanes (3 x 10 mL). The combined organic layers were washed with 10 mL of saturated aqueous NaCl, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resultant yellow oil was purified by flash chromatography (95:5 hexanes:EtOAc) to afford **24** (0.161 g, 70%) as a white solid: mp 109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.40 (m, 5H), 5.75 (s, 1H), 1.50 (s, 3H), 1.22 (s, 9H), 1.12 (s, 9H), 0.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 195.8, 170.1, 138.2, 130.5, 129.3, 129.0, 127.6, 86.0, 81.3, 27.9, 27.1, 26.0, 25.6, 22.4, 20.3; IR (thin film) 2933, 2859, 1755, 1270, 1018, 823 cm⁻¹; HRMS (ESI) *m* / *z* calcd for C₂₁H₃₀O₃SiNa (M + Na)⁺ 381.1862, found 381.1866. Anal. Calcd for C₂₁H₃₀O₃Si: C, 70.35; H, 8.43. Found: C, 70.08; H, 8.43.

25

Alcohol 25. To a solution of tetrabutylammonium fluoride (0.60 mL of a 1.0 M solution in THF, 0.60 mmol) and Pd(dba)₂ (0.018 g, 0.03 mmol) in 3.0 mL of THF was added a solution of oxasilacyclopentene 11 (0.125 g, 0.30 mmol) in 1.0 mL of THF. The solution was maintained at ambient temperature for 12 h, at which point the mixture was diluted with 15 mL of H₂O and 15 mL of MTBE. The layers were separated, and the aqueous layer was extracted with MTBE (3 x 15 mL). The combined organic layers were washed with H₂O (5 x 15 mL) followed by 15 mL of saturated aqueous NaCl, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resultant yellow oil was purified by flash chromatography (60:40 hexanes:EtOAc) to afford 25 (0.059 g, 67%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.47 (m, 2H), 7.36–7.38 (m, 2H), 7.27–7.31 (m, 1H), 6.13 (s, 1H), 4.10–4.22 (m, 4H), 3.17 (br s, 1H), 1.80 (s, 3H), 1.29 (t, *J* = 7.2, 3H), 1.10 (t, *J* = 7.1, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.8, 165.1, 135.3, 143.8, 128.4, 127.8, 125.6, 120.2, 75.6, 61.6, 61.1, 28.3, 14.1, 13.7. ¹H and ¹³C NMR spectroscopic data matched those previously reported.⁴

Ketone 27. To a solution of tetrabutylammonium fluoride (0.48 mL of a 1.0 M solution in THF, 0.48 mmol) and $Pd(dba)_2$ (0.014 g, 0.02 mmol) in 2.0 mL of THF was added a solution of oxasilacyclopentene **11** (0.100 g, 0.24 mmol) in 1.0 mL of THF. The solution was maintained at ambient temperature for 12 h, at which point the mixture was diluted with 10 mL of H₂O and 10 mL of

MTBE. The layers were separated, and the aqueous layer was extracted with MTBE (3 x 10 mL). The combined organic layers were washed with H₂O (5 x 10 mL) followed by 10 mL of saturated aqueous NaCl, dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The resultant yellow oil was purified by flash chromatography (78:20:2 hexanes:CH₂Cl₂:NEt₃) to afford **27** (0.037 g, 58%) as a colorless oil: ¹H NMR (400 MHz, CDCl₃) δ 8.03–8.06 (m, 2H), 7.59–7.61 (m, 1H), 7.48–7.52 (m, 2H), 4.87 (dd, *J* = 7.7, 6.7, 1H), 4.11–4.18 (m, 4H), 2.99–3.13 (m, 2H), 1.24 (t, *J* = 7.1, 3H), 1.16 (t, *J* = 7.1, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 194.3, 171.3, 168.8, 136.0, 133.7, 128.9, 128.8, 61.9, 61.1, 49.7, 33.3, 14.1, 14.0. ¹H and ¹³C NMR spectroscopic data matched those previously reported.⁵

IV. Stereochemical Proofs of Dioxasilacyclopentanes

Diol S1. The stereochemistry of dioxasilacyclopentane **7** was determined by hydrolysis to afford known diol **S1**. The stereochemistry of **S1** was determined by ¹H NMR spectroscopic analysis and comparison to literature values.^{6,7}

Dioxasilacyclopentane 5. The stereochemistry of dioxasilacyclopentane **9** was determined using DPFGSE-nuclear Overhauser effect (nOe) enhancements.

Figure S1. Relevant DPFGSE-nOe data (mixing time 0.5 s):

 $\mathbf{H}^{\mathbf{A}}$ irradiated: $\mathbf{H}^{\mathbf{B}}$ (1.7%) $\mathbf{H}^{\mathbf{B}}$ irradiated: $\mathbf{H}^{\mathbf{A}}$ (1.6%)

V. References

- (1) Driver, T. G.; Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124, 6524–6525.
- (2) Boudjouk, P.; Black, E.; Kumarathasan, R. Organometallics 1991, 10, 2095–2096.
- (3) Palmer, W. S.; Woerpel, K. A. Organometallics 1997, 16, 4824–4827.
- (4) Harrowven, D. C.; Poon, H. S. *Tetrahedron* **1996**, *52*, 1389–1398.
- (5) Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. J. J. Am. Chem. Soc. 2004, 126, 2314–2315.
- (6) Corey, E. J.; Hopkins, P. B. *Tetrahedron. Lett.* **1982**, *23*, 4871–4874.
- (7) Clerici, A.; Porta, O. J. Org. Chem. 1985, 50, 76–81.

VI. Selected Spectra

S-12

