



a)

**Supplementary Figure 1. Distribution of sequenced reads for different values of GC content.** (a) GC profiles for raw and mapped sequence data for all *P. falciparum* libraries, along with simulated data ('Shred-3D7') for comparison. GC levels are calculated in a window size of read length, so the peak of fraction reads is dependent upon the read length. If, for example, read length = 1 bp, there would be two points in the GC curve, corresponding to the mean % AT at 0 % GC, and the mean % GC at 100 % GC. Conversely, for the NP-3D7-L data, read length is approximately twice that of the other datasets, so and so the peak height is halved. (b) GC profiles for *E. coli* and *B. pertussis* datasets alongside simulated data ('Shred-ST24' and 'Shred-042').

Supplementary Figure 2



# Supplementary Figure 2. Trimmed 76-base reads.

We trimmed the 76 bp reads back to 36 bp and plotted the fraction of mapped reads against % GC. It can be seen that mapped curve (NP-3D7-L-trim mapped) agrees well with the Shred-3D7-L curve. For the trimmed raw data (NP-3D7-L-trim raw), however, we see a tail shifting away from the theoretical predictions, showing that the data from the 76 bp run has a higher level of bias than the 36 bp run. Because the same library was used in both runs, it indicates a problem with the longer sequencing run.

# Supplementary Table 1

|            |                    |          | Genome    | Insert<br>size |                      | Sequencing | Read              | Number             |
|------------|--------------------|----------|-----------|----------------|----------------------|------------|-------------------|--------------------|
| Library    | Organism           | Strain   | size (Mb) | (bp)           | Run_id               | platform   | length<br>(bases) | Number<br>of tiles |
| NP-3D7-S   | P. falciparum      | 3D7      | 23        | 200            | 1022_s_5             | GAI        | 36                | 300                |
| 111 507 5  | 1. jaioiparini     | 507      | 23        | 200            | 1022_s_9<br>1022_s_8 | 0/H        | 36                | 300                |
| NP-3D7-L   | P. falciparum      | 3D7      | 23        | 200            | 1105_s_5             | GAII       | 76                | 100                |
| 111 02 / 2 | 1. jene op en unit | 027      | 23        | 200            | 1105_s_7             | GAII       | 76                | 100                |
| STD-PF88   | P. falciparum      | clinical | 23        | 200            | 883_s_1              | GAI        | 36                | 330                |
|            | $j \cdots j$       | isolate  | 23        |                | 883_s_2              | _          | 36                | 330                |
|            |                    |          | 23        |                | 883_s_3              |            | 36                | 330                |
|            |                    |          | 23        |                | 883_s_5              |            | 36                | 330                |
|            |                    |          | 23        |                | 883_s_6              |            | 36                | 330                |
|            |                    |          | 23        |                | 883_s_7              |            | 36                | 330                |
|            |                    |          | 23        |                | 883_s_8              |            | 36                | 330                |
| STD-PF3    | P. falciparum      | 3D7      | 23        | 200            | 368_s_1              | GAI        | 35                | 330                |
|            |                    |          | 23        |                | 368_s_2              |            | 35                | 330                |
|            |                    |          | 23        |                | 368_s_3              |            | 35                | 330                |
|            |                    |          | 23        |                | 368_s_5              |            | 35                | 330                |
|            |                    |          | 23        |                | 368_s_6              |            | 35                | 330                |
|            |                    |          | 23        |                | 368_s_7              |            | 35                | 330                |
|            |                    |          | 23        |                | 368_s_8              |            | 35                | 330                |
| STD-PF2    | P. falciparum      | 3D7      | 23        | 200            | 245_s_1              | GAI        | 35                | 330                |
|            |                    |          | 23        |                | 245_s_2              |            | 35                | 330                |
|            |                    |          | 23        |                | 245_s_3              |            | 35                | 330                |
|            |                    |          | 23        |                | 245_s_5              |            | 35                | 330                |
|            |                    |          | 23        |                | 245_s_6              |            | 35                | 330                |
|            |                    |          | 23        |                | 245_s_7              |            | 35                | 330                |
|            |                    |          | 23        |                | 245_s_8              |            | 35                | 330                |
| STD-PF85   | P. falciparum      | 3D7      | 23        | 200            | 851_s_1              | GAI        | 35                | 330                |
|            |                    |          | 23        |                | 851_s_2              |            | 35                | 330                |
| NP-042     | E. coli            | 042      | 5.3       | 200            | 1022_s_1             | GAI        | 36                | 300                |
| STD-042    | E. coli            | 042      | 5.3       | 200            | 1603_s_5             | GAII       | 37                | 100                |
| NP-ST24    | B. pertussis       | ST24     | 4.0       | 200            | 1022_s_3             | GAI        | 36                | 300                |
| STD-ST24   | B. pertussis       | ST24     | 4.0       | 200            | 1603_s_7             | GAII       | 37                | 100                |
|            |                    |          | 4.0       |                | 1603_s_8             |            | 37                | 100                |

|          | Mean<br>clusters per | Mean PF clusters per | Total PF | % PF     | Number of  | Number of unique PE | Total<br>number |
|----------|----------------------|----------------------|----------|----------|------------|---------------------|-----------------|
| Library  | tile                 | tile                 | clusters | clusters | reads/lane | reads <sup>†</sup>  | of reads        |
| NP-3D7-S | 4.3E+04              | 2.2E+04              | 6.7E+06  | 51.2     | 1.3E+07    | 1.3E+07             |                 |
| _        | 3.7E+04              | 2.4E+04              | 7.3E+06  | 66.1     | 1.5E+07    | 1.4E+07             | 2.8E+07         |
| NP-3D7-L | 7.1E+04              | 5.3E+04              | 5.3E+06  | 74.6     | 1.1E+07    | 1.0E+07             |                 |
|          | 5.7E+04              | 4.5E+04              | 4.5E+06  | 78.3     | 8.9E+06    | 8.0E+06             | 2.0E+07         |
| STD-PF88 | 4.7E+04              | 2.4E+04              | 8.0E+06  | 51.8     | 1.6E+07    | 1.6E+07             |                 |
|          | 4.6E+04              | 2.5E+04              | 8.3E+06  | 55.1     | 1.7E+07    | 1.6E+07             |                 |
|          | 4.5E+04              | 2.5E+04              | 8.2E+06  | 55.0     | 1.6E+07    | 1.6E+07             |                 |
|          | 4.6E+04              | 2.4E+04              | 8.1E+06  | 53.5     | 1.6E+07    | 1.6E+07             |                 |

|          | 4.5E+04 | 2.4E+04 | 7.9E+06   | 53.1 | 1.6E+07 | 1.6E+07 |         |
|----------|---------|---------|-----------|------|---------|---------|---------|
|          | 4.5E+04 | 2.3E+04 | 7.7E+06   | 51.1 | 1.5E+07 | 1.5E+07 |         |
|          | 4.5E+04 | 2.2E+04 | 7.4E+06   | 49.0 | 1.5E+07 | 1.5E+07 | 1.1E+08 |
| STD-PF3  | 3.0E+04 | 1.5E+04 | 5.1E+06   | 51.9 | 1.0E+07 | 8.7E+06 |         |
|          | 2.8E+04 | 1.4E+04 | 4.7E+06   | 51.1 | 9.4E+06 | 7.8E+06 |         |
|          | 2.9E+04 | 1.8E+04 | 6.0E+06   | 63.6 | 1.2E+07 | 1.1E+07 |         |
|          | 2.4E+04 | 1.6E+04 | 5.3E+06   | 68.3 | 1.1E+07 | 9.2E+06 |         |
|          | 2.4E+04 | 1.7E+04 | 5.7E+06   | 72.2 | 1.1E+07 | 1.0E+07 |         |
|          | 2.4E+04 | 1.6E+04 | 5.4E+06   | 69.4 | 1.1E+07 | 9.7E+06 |         |
|          | 2.3E+04 | 1.6E+04 | 5.3E+06   | 69.0 | 1.1E+07 | 9.5E+06 | 7.5E+07 |
| STD-PF2  | 1.6E+04 | 1.1E+04 | 3.5E+06   | 66.2 | 7.0E+06 | 6.2E+06 | _       |
|          | 1.5E+04 | 1.0E+04 | 3.3E+06   | 69.7 | 6.7E+06 | 5.6E+06 |         |
|          | 2.3E+04 | 1.6E+04 | 5.4E+06   | 69.4 | 1.1E+07 | 1.1E+07 |         |
|          | 2.1E+04 | 1.5E+04 | 5.1E+06   | 73.7 | 1.0E+07 | 9.8E+06 |         |
|          | 2.1E+04 | 1.6E+04 | 5.2E+06   | 75.6 | 1.0E+07 | 1.0E+07 |         |
|          | 1.8E+04 | 1.4E+04 | 4.5E+06   | 76.4 | 8.9E+06 | 8.3E+06 |         |
|          | 1.8E+04 | 1.3E+04 | 4.4E + 06 | 75.6 | 8.8E+06 | 8.4E+06 | 6.3E+07 |
| STD-PF85 | 1.5E+04 | 1.0E+04 | 3.4E+06   | 68.6 | 6.9E+06 | 5.1E+06 |         |
|          | 1.4E+04 | 1.0E+04 | 3.3E+06   | 72.7 | 6.7E+06 | 4.8E+06 | 1.4E+07 |
| NP-042   | 4.2E+04 | 2.4E+04 | 7.1E+06   | 55.5 | 1.4E+07 | 1.4E+07 | 1.4E+07 |
| STD-042  | 6.4E+04 | 5.4E+04 | 5.4E+06   | 83.5 | 1.1E+07 | 1.0E+07 | 1.1E+07 |
| NP-ST24  | 3.2E+04 | 2.1E+04 | 6.3E+06   | 65.6 | 1.3E+07 | 1.2E+07 | 1.3E+07 |
| STD-ST24 | 3.7E+04 | 3.0E+04 | 3.0E+06   | 82.5 | 6.0E+06 | 5.7E+06 |         |
|          | 3.6E+04 | 2.9E+04 | 2.9E+06   | 79.3 | 5.7E+06 | 5.4E+06 | 1.2E+07 |
|          |         |         |           |      |         |         |         |

| Library  | % unique<br>reads per<br>library | Yield per<br>read / lane<br>(Mb) | Yield per<br>lane (Mb) | Total<br>sequence<br>generated<br>(Mb) | Number of<br>reads<br>mapped /<br>lane | Total<br>number of<br>reads<br>mapped | % mapping<br>/ lane |
|----------|----------------------------------|----------------------------------|------------------------|----------------------------------------|----------------------------------------|---------------------------------------|---------------------|
| NP-3D7-S |                                  | 240                              | 480                    |                                        | 1.2E+07                                |                                       | 88.0                |
|          | 96.4                             | 264                              | 529                    | 1008                                   | 1.3E+07                                | 2.5E+07                               | 89.2                |
| NP-3D7-L |                                  | 404                              | 809                    |                                        | 9.5E+06                                |                                       | 88.8                |
|          | 93.8                             | 339                              | 678                    | 1486                                   | 6.5E+06                                | 1.6E+07                               | 73.4                |
| STD-PF88 |                                  | 287                              | 574                    |                                        | 1.2E+07                                |                                       | 72.8                |
|          |                                  | 298                              | 597                    |                                        | 1.2E+07                                |                                       | 71.9                |
|          |                                  | 296                              | 592                    |                                        | 1.2E+07                                |                                       | 71.1                |
|          |                                  | 290                              | 581                    |                                        | 1.2E+07                                |                                       | 71.3                |
|          |                                  | 284                              | 568                    |                                        | 1.1E+07                                |                                       | 71.3                |
|          |                                  | 276                              | 552                    |                                        | 1.1E+07                                |                                       | 71.4                |
|          | 99.3                             | 265                              | 530                    | 3994                                   | 1.1E+07                                | 7.9E+07                               | 71.6                |
| STD-PF3  |                                  | 179                              | 357                    |                                        | 6.7E+06                                |                                       | 65.9                |
|          |                                  | 165                              | 331                    |                                        | 6.1E+06                                |                                       | 65.2                |
|          |                                  | 211                              | 422                    |                                        | 8.8E+06                                |                                       | 73.3                |
|          |                                  | 186                              | 372                    |                                        | 7.2E+06                                |                                       | 67.8                |
|          |                                  | 198                              | 396                    |                                        | 7.7E+06                                |                                       | 68.5                |
|          |                                  | 190                              | 379                    |                                        | 7.9E+06                                |                                       | 72.9                |
|          | 88.3                             | 187                              | 374                    | 2631                                   | 7.8E+06                                | 5.2E+07                               | 72.9                |
| STD-PF2  |                                  | 123                              | 245                    |                                        | 3.3E+06                                |                                       | 46.9                |
|          |                                  | 117                              | 234                    |                                        | 3.2E+06                                |                                       | 47.2                |
|          |                                  | 188                              | 377                    |                                        | 6.9E+06                                |                                       | 63.9                |
|          |                                  | 178                              | 356                    |                                        | 5.3E+06                                |                                       | 52.5                |

|          |                | 182 | 365 |      | 4.7E+06 |         | 44.7 |
|----------|----------------|-----|-----|------|---------|---------|------|
|          |                | 156 | 312 |      | 5.9E+06 |         | 66.8 |
|          | 93.8           | 155 | 310 | 2199 | 5.7E+06 | 3.5E+07 | 64.9 |
| STD-PF85 |                | 120 | 240 |      | 4.2E+06 |         | 61.2 |
|          | 73.7           | 117 | 233 | 474  | 4.0E+06 | 8.2E+06 | 60.1 |
| NP-042   | 98.5           | 254 | 508 | 508  | 1.3E+07 | 1.3E+07 | 94.2 |
| STD-042  | 97.9           | 198 | 397 | 397  | 1.0E+07 | 1.0E+07 | 96.9 |
| NP-ST24  | 96.4           | 226 | 452 | 452  | 1.1E+07 | 1.1E+07 | 88.8 |
| STD-ST24 |                | 112 | 223 |      | 5.3E+06 |         | 87.4 |
|          | 94.2           | 106 | 212 | 435  | 4.8E+06 | 1.0E+07 | 84.5 |
|          | 2 ··· <b>-</b> | 100 | 212 |      |         | 1.02107 | 5115 |

| Library  | Mean %<br>mapping | Mean raw<br>coverage<br>per lane | Total<br>mean raw<br>coverage | Bases not<br>covered by<br>unique<br>mapping | % bases not<br>covered by<br>unique<br>mapping |
|----------|-------------------|----------------------------------|-------------------------------|----------------------------------------------|------------------------------------------------|
| NP-3D7-S | mapping           | 21                               | coverage                      | mapping                                      | mapping                                        |
| NP-3D/-5 | 80                |                                  | 4.4                           | 447927                                       | 1.9                                            |
|          | 89                | 23<br>35                         | 44                            | 44/92/                                       | 1.7                                            |
| NP-3D7-L | 00                |                                  | 65                            | 221275                                       | 1.0                                            |
|          | 82                | 29                               | 65                            | 221275                                       | 1.0                                            |
| STD-PF88 |                   | 25                               |                               |                                              |                                                |
|          |                   | 26                               |                               |                                              |                                                |
|          |                   | 26                               |                               |                                              |                                                |
|          |                   | 25                               |                               |                                              |                                                |
|          |                   | 25                               |                               |                                              |                                                |
|          |                   | 24                               |                               | 1 = 1 = = 0 = 0                              |                                                |
|          | 72                | 23                               | 174                           | 1513500                                      | 6.6                                            |
| STD-PF3  |                   | 16                               |                               |                                              |                                                |
|          |                   | 14                               |                               |                                              |                                                |
|          |                   | 18                               |                               |                                              |                                                |
|          |                   | 16                               |                               |                                              |                                                |
|          |                   | 17                               |                               |                                              |                                                |
|          |                   | 16                               |                               |                                              |                                                |
|          | 70                | 16                               | 114                           | 1104037                                      | 4.8                                            |
| STD-PF2  |                   | 11                               |                               |                                              |                                                |
|          |                   | 10                               |                               |                                              |                                                |
|          |                   | 16                               |                               |                                              |                                                |
|          |                   | 15                               |                               |                                              |                                                |
|          |                   | 16                               |                               |                                              |                                                |
|          |                   | 14                               |                               |                                              |                                                |
|          | 56                | 13                               | 96                            | 2214439                                      | 9.6                                            |
| STD-85   |                   | 10                               |                               |                                              |                                                |
|          | 61                | 10                               | 21                            | 4582724                                      | 19.9                                           |
| NP-042   | 94                | 96                               | 96                            | 43719                                        | 0.8                                            |
| STD-042  | 97                | 75                               | 75                            | 48303                                        | 0.9                                            |
| NP-ST24  | 89                | 113                              | 113                           | 227603                                       | 5.7                                            |
| STD-ST24 |                   | 56                               | -                             |                                              |                                                |
|          | 86                | 53                               | 109                           | 270697                                       | 6.8                                            |

Supplementary Table 1. Detailed library and run information for standard and no-

PCR libraries.

No-PCR libraries have the prefix 'NP', whereas standard libraries have the prefix 'STD'. Suffixes 'L' and 'S' indicate Long and Short different sequencing runs performed on the same library. *B. pertussis* ST24 is not a finished assembly and some contigs are vector contamination. As a consequence, the % of regions with zero coverage is high.

<sup>†</sup> Number of unique paired end reads for all sequences, before mapping.

# **Supplementary Methods**

## DNA preparation and adapter ligation

We fragmented 4.5 µg genomic DNA (quantified by NanoDrop) to approximately 200 bp using Covaris Adaptive Focused Acoustics technology, using the settings: 5 % Duty Cycle; Intensity 10; 200 Cycles per burst over the course of 12 minutes. Following this, we requantified DNA using an Agilent Bioanalyzer 2100 DNA 1000 chip, to confirm the mass of starting material. After end repair and A-tailing following the standard Illumina protocols, we set up ligation reactions in a total volume of 50 µl containing 10 µl template DNA, 8 µM adapters, 1x Illumina DNA ligation buffer, 5 µl Illumina DNA ligase, and incubated reactions for 15 minutes at 20 °C. Ligated samples were then run in a 2 % agarose gel, a size selection was performed, and DNA was extracted <sup>1</sup>.

### Adapter sequences

We designed adapters were designed so that the 5' sequence allows hybridisation to the Illumina flowcell, and the 3' sequence allows hybridisation of the read 1 or read 2 sequencing primer  $^{1}$ .

A\_adapter\_t (Sigma)

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC GATC\*T, \* indicates phosphorothioate

## A\_adapter\_b (Sigma)

# GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCT TCTGCTTG

Both adapters were HPLC purified.

### **Quantification and sequencing**

Libraries were quantified by qPCR  $^2$ , alongside three dilutions of a concentration standard library – i.e. a similar library that we had sequenced previously and for which we knew the precise cluster number based on its Bioanalyzer concentration.

Libraries were sequenced on Illumina GAI and GAII Analyzers following the manufacturer's standard cluster generation and sequencing protocols, for 35-76 cycles of sequencing per read <sup>1</sup>.

### Standard library preparation

Standard sequencing libraries were prepared following the manufacturer's recommended protocol <sup>1</sup>, except that genomic DNA was fragmented using Covaris Adaptive Focused Acoustics rather than nebulisation, as described above. After 12 cycles of PCR, we quantified these libraries using an Agilent Bioanalyser 2100 DNA 1000 chip, and by qPCR, as described above, prepared PE flowcells and sequenced for 35 or 36 cycles on an Illumina Genome Analyzer and 36, 37 or 76 cycles on a Genome Analyzer II fitted with PE modules. 76 cycle runs were performed using an alternative deblock reagent, supplied by Illumina.

#### Illumina read alignment, SNP calling and de novo assembly

For read mapping, we used our modified SSAHA (Sequence Search and Alignment by Hashing Algorithm) program http://www.sanger.ac.uk/Software/analysis/SSAHA2/<sup>3</sup>, which has been optimized for short-reads. The alignment files were processed further for SNP detection using a variation detection pipeline ssaha\_pileup ( ftp://ftp.sanger.ac.uk/pub/zn1/ssaha\_pileup/ ). It is expected that the high sensitivity offered by the alignment tool should improve read mapping, particularly, for those extremely AT biased genomes such as *Plasmodium falciparum*.

The availability of paired end Illumina data provides challenging, but exciting prospects for de novo assemblies, where requirement for read coverage across the genome is more than that for variation detections. Within a generated contig, every base has to be covered several times from raw reads in order to make a consensus. We performed assembly using the Velvet (version 0.7.26) short read assembler <sup>4</sup> to produce assemblies from all datasets. Input parameters such as "-ins\_length" and "exp\_cov" were adjusted according to the mapping values while setting "-min\_pair\_count 20", "-min\_contig\_length 100" and "-cov\_cutoff 10". Other parameters were set by default.

### References

- 1. Bentley D.R. *et al.* Accurate whole human genome sequencing using reversible terminator chemistry. *Nature* **456**, 53-59 (2008).
- 2. Quail M.A. *et al.* A large genome centre's improvements to the Illumina sequencing system. *Nature Methods* **5**, 1005-1010 (2008).

- 3. Ning Z., Cox A.J. & Mullikin J.C. SSAHA: a fast search method for large DNA databases. *Genome Res* **11**, 1725-1729 (2001).
- 4. Zerbino D.R. & Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* **18**, 821-829 (2008).