Plotnikov et al, Impaired turnover of prolactin receptor contributes to transformation of human breast cells ## **Supplementary Data** ## Legends to supplementary figures Figure 1S: Degradation of Flag-tagged PRLr-WT or PRLr-S349A mutant in MCF10A Δ p53 cells was analyzed by cycloheximide chase followed by immunoblotting using anti-Flag antibody (upper panel). Analysis of β -actin levels was used as a loading control (lower panel). **Figure 2S**: Representative morphology of indicated MCF10A Δ p53 cell lines growth in three-dimensional cultures at the indicated day after plating. Scale bar - 15 μ M. **Figure 3S**: Pictures of H&E stained histological slides were taken at 8 day after indicated MCF10AΔp53 cells injection into the NCRNU-M mice. The pictures were taken using the indicated microscope objectives. **Figure 4S**: Effect of anadamide on the growth of T47D cells. The graph represents the number of live cells calculated with trypan blue \pm SE at indicated times after the treatment. The differences between groups were statistical significant (pV < 0.05) at all indicated times. **Figure 5S**: Effect of anandamide on S349-PRLr phosphorylation in -MCF10A Δ p53 cells. MCF10Ap Δ 53 cells expressing flag-tagged PRLr-WT were pretreated with 20mM of methylamine for 2 hours, and then with 10μM of anandamide for indicated times. The lysates immunoprecipitated with anti-flag M2 agarose, separated on SDS-PAGE and analyzed by immunoblotting with antibodies against pSer349-PRLr, upper panel; and Flag, bottom panel. **Figure 6S**: Degradation of Flag-tagged PRLr-WT in MCF10A Δ p53 cells after anandamide treatment was analyzed by cycloheximide chase followed by immunoblotting using anti-Flag antibody (upper panel). Analysis of β-actin levels was used as a loading control (lower panel). **Figure 7S**: Photos of the tumors derived from the indicated T47D cells at 32 day after cell injection either into animal flank or into the abdominal mammary glands as indicated.