SUPPLEMENTAL MATERIAL

Table S1. Amino acids 90-104 are strictly conserved in Class I EPSP synthases.

EPSPS	Amino Acid Residue							
Escherichia coli	⁹⁰ LFLGN	AGTAM	RPLAA ¹⁰⁴					
Klebsiella pneumoniae	⁹⁰ LFLGN	AGTAM	RPLAA ¹⁰⁴					
Salmonella typhi	⁹⁰ LFLGN	AGTAM	\mathbf{RPLAA}^{104}					
Zea mays	⁹⁵ LFLGN	AGTAM	RPLTA ¹⁰⁹					
Petunia hybrida	¹⁶⁷ LFLGN	AGTAM	RPLTA ¹⁸¹					

TABLE S2. Changes in backbone torsion angles of residues 96 to 98 as a result of Thr⁹⁷/Pro¹⁰¹ mutations.

	WT EPSPS			T97I EPSPS			TIPS EPSPS		
S3P + Glyphosate bound	Gly ⁹⁶	Thr ⁹⁷	Ala ⁹⁸	Gly ⁹⁶	Thr ⁹⁷	Ala ⁹⁸	Gly ⁹⁶	Thr ⁹⁷	Ala ⁹⁸
Torsion Angle ^a									
Φ	-63°	-72°	-104°	-61°	-78°	-106°	-58°	-62°	-67°
Ψ	-34°	-5.6°	-50°	-39°	5.0°	-50°	-50°	-36°	-48°
ω	-178°	170°	-178°	-178°	171°	-178°	-178°	178°	180°
Planarity	0.32°	-0.03°	0.84°	0.1°	0.23°	-0.3°	-0.5°	-1.7°	-0.27°
S3P bound	Gly ⁹⁶	Thr ⁹⁷	Ala ⁹⁸	Gly ⁹⁶	Thr ⁹⁷	Ala ⁹⁸	Gly ⁹⁶	Thr ⁹⁷	Ala ⁹⁸
Torsion Angle									
Φ	-59°	-72°	-106°	-61°	-76°	-107°	-57°	-61°	-61°
Ψ	-38°	-4.3°	-47°	-40°	3.4°	-50°	-56°	- 41°	-47°
ω	-179°	172°	-178°	-178°	173°	-179°	-180°	179°	179°
Planarity	- 0.14°	1.65°	-0.25°	-0.6°	- 0.1°	-0.83°	1.0°	-0.88°	0.4°

^a The torsion angles were calculated with Moleman2 (1), with $\Phi = C(i-1) - N(i) - CA(i) - C(i)$, = $\psi = N(i) - CA(i) - C(i) - N(i+1)$, $\omega = CA(i) - C(i) - N(i+1) - CA(i+1)$, and planarity = C(i) - CA(i) - N(i+1) - O(i)

(1) Kleywegt, G. J. (2001) *International Tables for Crystallography*, Kluwer Academic Publishers, **Volume F**, 497-506, 526-528.

Substrate saturation in the presence of increasing concentrations of glyphosate: $0 \ \mu M (\bullet)$, $0.2 \ \mu M (\circ)$, $0.8 \ \mu M (\bullet)$, $2.4 \ \mu M (\bullet)$, $3.2 \ \mu M (\Box)$, and $4.8 \ \mu M (\bullet)$. S3P concentration was 1 mM. Enzyme concentration was 1.4 nM. Data were fit to the Michaelis-Menten equation.

Inset: Replot of the observed K_m values as a function of glyphosate concentration. Data were fit to equation (1) yielding K_i of $0.3 \pm 0.07 \mu$ M.

FIGURE S2. Inhibition of P101S EPSPS by glyphosate: determination of K_i.

Substrate saturation in the presence of increasing concentrations of glyphosate: $0 \ \mu M$ (•), 1.1 μM (\odot), 2.3 μM (\checkmark), 4.5 μM (\triangle), 9.0 μM (\blacksquare), 18.0 μM (\Box), and 36.0 μM (\blacklozenge) S3P concentration was 1 mM. Enzyme concentration was 2.9 nM. Data were fit to the Michaelis-Menten equation. Inset: Replot of the observed K_m values as a function of glyphosate concentration. Data were fit to equation (1) yielding K_i of 3.0 \pm 0.3 μM .

FIGURE S3. Inhibition of T97I EPSPS by glyphosate: determination of K_i.

Substrate saturation in the presence of increasing concentrations of glyphosate: $0 \ \mu M$ (•), 0.038 mM (\circ), 0.056 mM (\checkmark), 0.30 mM (\triangle), 0.45 mM (\blacksquare), and 0.60 mM (\Box). S3P concentration was 1 mM. Enzyme concentration was 5.1 nM. Data were fit to the Michaelis-Menten equation. Inset: Replot of the observed K_m values as a function of glyphosate concentration. Data were fit to equation (1) yielding K_i of 90 ± 6 μ M

Substrate saturation in the presence of increasing concentrations of glyphosate: $0 \ \mu M$ (\bullet), 0.25 mM (\circ), 0.375 mM (\bullet), 1.0 mM (\triangle), 1.5 mM (\blacksquare), 2.0 mM (\square), and 2.5 mM (\bullet). S3P concentration was 1 mM. Enzyme concentration was 7.9 nM. Data were fit to the Michaelis-Menten equation. Inset: Replot of the observed K_m values as a function of glyphosate concentration. Data were fit to equation (1) yielding K_i of 2420 ± 87 μ M.

FIGURE S5. Activity of wild-type and mutant enzymes: determination of the K_m for S3P. Substrate saturation curves for WT (\bullet), P101S (\circ), T97I (\checkmark), and TIPS (\triangle) using 1 mM PEP and increasing concentrations of S3P. Data were fit to the Michaelis-Menten equation yielding the K_m values listed in Table 2.

FIGURE S6. Activity of wild-type and mutant enzymes: determination of the K_m for PEP. Substrate saturation curves for WT (\bullet), P101S (\circ), T97I (\checkmark), and TIPS (\triangle) using 1 mM S3P and increasing concentrations of PEP. Data were fit to the Michaelis-Menten equation yielding the K_m values listed in Table 2.

FIGURE S7. Inhibition of TIPS and WT EPSPS by analogs of the tetrahedral reaction intermediate (TI).

Enzymatic activity was determined in the presence of increasing concentrations of the (R)-difluoro-TI analog (2F-TI), the (R)-phosphonate-TI analog (RP-TI), and the (S)-phosphonate-TI analog (SP-TI).

FIGURE S8. Impact of the mutations on the S3P molecule. The average B-factor of the S3P molecule when bound to the T97I (\blacktriangle) and TIPS (\blacksquare) enzymes is slightly increased over S3P bound in the WT enzyme (\bullet).