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Bayesian state-space modeling for neuronal activity 
 
We outline in this section a method for estimating the rate and change-point in neural activity.  
For consistency and comparison with results from the behavioral analysis, we selected a model 
for neural activity very similar in structure to our previous Bayesian model for behavioral data 
(Smith et al., 2007).   
 
Assume the neural count observations in each period are represented by { }1 2 3, , ,..., Kn n n n  where 
K  is the total number of trials. We assume that the neural activity has an underlying state process 
defined by 
 
  1k k kx x ε−= +                              (A1)  
 
where kx  is the unknown state at trial k and kε  is a Gaussian random variable with mean zero 
and variance 2

εσ .  We assume further that 0x  is unknown and assign a broad uninformative 
Gaussian prior with mean 0 and variance 100.   
 
Model 1. In our initial analysis we assumed that the count observations were Poisson-distributed 
as follows: 
 

Pr( | ) exp{ log ( | ) ( | )}k k k k kn x n k x k xλ λ= −                                   (A2) 
 
where the rate at trial k , ( | )kk xλ , is related to the state by a log link function as follows 
 

( | ) exp( )k kk x xλ = .                                               (A3) 
 

We fitted this model using a Monte Carlo Markov chain approach (WinBUGS, Lunn et al., 2000) 
outlined for behavioral data in Smith et al. (2007). 
 
Model 2. Our results from this analysis technique indicated that in some cases the model 
appeared to over-fit the data and that the variance of the data was so high in many cases that a 
Poisson-based model might not provide the best fit to the data.  As a result, we used a mixture 
model approach designed to account for Poisson overdispersion outlined in Congdon (p157, 
2005) and Durham et al. (2004).  Essentially this allowed us to add an extra parameter that 
enabled the model no longer to be constrained by the Poisson assumption of equal mean and 
variance.  To implement this we replaced Eqs. A2 and A3 with the following 4 equations: 
 

1 1Pr( | ) exp{ log ( | ) ( | )}k k k k kn x n k x k xλ λ= −                                (A4) 
 

1( | )  ( | )k k kk x r k xλ λ=                                                (A5) 
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                                                    (A6) 

and 
( | ) exp( )k kk x xλ = .                                                       (A7) 
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By adding the gamma-distributed random variable kr  (Eqs.  A5 and A6), the model is better able 
to accommodate data with large variances.  For identifiability we assumed the gamma distribution 
parameters 1α  and 2α  were equal (Congdon, 2005) and had priors that were exponential 
transforms of the normal distribution as used in Durham et al. (2004).  
 
We demonstrate below 4 example data sets.  The raw neural firing rate is indicated by blue dots 
and the ratio of the raw data mean to variance is 0.34, 0.24, 0.64 and 0.28 for data in Panels A, B, 
C and D, respectively. For each data set, we fitted the Poisson model (Model 1; gray lines 
indicate median and 95% credible intervals) and the gamma-Poisson model (Model 2; red lines 
indicate median and 95% credible intervals).  For the data sets in Panels A and B, Model 2 
provides a smoother model fit compared to Model 1.  In Panels C and D, both models give similar 
results.  Since Model 2 is a more general version of Model 1, we chose to estimate the neural 
firing for all data sets using Model 2.  
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