
Appendix 1. Climate suitability models, ensemble forecast and their performances 

 

Niche models 

We performed the projections using 9 different widely used niche-based modelling techniques 

among which 8 were performed with the BIOMOD computational framework (Thuiller 

2003): (1) generalized linear model (GLM), a regression method with polynomial terms for 

which a stepwise procedure is used to select the most significant variables, (2) generalized 

additive model (GAM), another regression method with 4 degrees of freedom and a stepwise 

procedure to select the most parsimonious model, (3) classification tree analysis (CTA; 

Breiman et al. 1984), a classification method running a 50-fold cross-validation to select the 

best trade-off between the number of leaves of the tree and the explained deviance, (4) 

artificial neural networks (ANN; Ripley 1996), a machine learning method, with the mean of 

3 runs used to provide predictions and projections, as each simulation gives slightly different 

results, (5) mixture discriminant analysis (MDA; Hastie & Tibshirani 1996), a classification 

method based on mixture models, (6) multivariate adaptive regression splines (MARS; 

Friedman 1991), a nonparametric regression method mixing CTA and GAM, which could be 

viewed as an ancestor of GBM, (7) generalized boosting model (GBM; Ridgeway 1999), a 

machine learning method which combines a boosting algorithm and a regression tree 

algorithm to construct an 'ensemble' of trees, and (8) Random Forest (RF; Breiman 2001), a 

machine learning method which is a combination of tree predictors such that each tree 

depends on the values of a random vector sampled independently and with the same 

distribution for all trees in the forest. Finally, we run (9) Maxent version 3 (Phillips et al. 

2006), a machine learning method that estimates species distributions by finding the 

distribution of maximum entropy subject to the constraint that the expected value of each 

environmental variable under this estimated distribution matches its empirical average. All 

models used in this study need information about presences and absences to be able to 

determine suitable conditions for a given species. As our dataset contained only presence data, 

we needed to define pseudo-absences (see Appendix 2). 

 

Independant validation of species models 

In order to assess the accuracy of our final distributions, we provide independent validations 

of individual species’ models, by using the wintering distribution maps from the Handbooks 

of “The Birds of Africa” (Keith & Fry 1992-2004). Presence/absence data was obtained by 

digitizing the maps with ArcGis 9.1. The AUC calculated with this independent set of data 



ranges from 0.72 to 0.99 (0.92±0.06, Appendix 3). Generally, models with AUC>0.9 are 

considered to perform very well, and values of AUC>0.7 are considered as acceptable (Swets 

1988). Therefore, the models and its consensus seem robust and predictive, so the climate 

forecasts can be applied for all species. 

 

Consensus maps 

For each species and each climate model, the selection of the 5 best models for the consensus 

method was based on ROC curves and the Area Under Curve criteria (AUC; Fielding & Bell 

1997). Regarding the ensemble forecast technique, we tested two ways of using the selected 

models, by calculating either the weighted mean (with AUC as weights, as described in 

Marmion et al. 2008) or the unweighted mean. The present distributions we obtain did not 

show any differences as for their centroids (paired t-test for the latitude: t=-0.773, df=63, 

p=0.44; paired t-test for the longitude: t=1.269, df=63, p=0.21). There was a significant 

difference between range sizes obtained from both methods (paired t-test: t=5.349, df=63, 

p<0.001), but this difference was small (ranging from -2.0% to +3.9%). In order to minimize 

potential flaws resulting from the wide use of AUC values (see Lobo et al. 2008), we decided 

to use unweighted means here. 

 

AUC use and limits 

According to Lobo et al. (2008), the AUC technique is not recommended to assess the 

accuracy of predictive distribution models, mainly because it varies with parameters such as 

the prevalence, the number of pseudo-absences and the total extent to which models are 

carried out, which do not occur here because we use AUC to compare different models 

obtained for one species, using the same presences and pseudo-absences data, across the same 

geographical area. (1) AUC can be biased by variations in pseudo-absence selection, but in 

our study, pseudo-absences were selected with a similar procedure for all species, and most 

importantly, for a given species, the same set of randomly-selected pseudo-absences was used 

for running the different modelling techniques. (2) AUC varies with the total extent to which 

models are carried out, as it influences the rate of well-predicted absences. This is the most 

important flaw cited by Lobo et al. (2008). In this study, the extent area where models are 

performed is fixed, so this major limitation does not apply in this case. (3) AUC weights 

omission and commission errors equally. From a reserve-design point of view, 

misclassifications of absences (commission errors) must be regarded as a more serious 

drawback than the opposite; on the other hand, low omission errors are desirable when 



searching for new species or populations. In the case of simply modelling probabilistic 

distributions, with the aim of comparing distributions obtained with the same presence – 

absence data for a species, weighting omission and commission equally should not produce 

bias able to discredit the comparison. (4) Finally, pseudo-absences have a higher degree of 

uncertainty than presences, because they are selected randomly within absence areas which 

may be due, simply, to low detectability of the species, or may correspond to non-sampled 

areas. Because of this, false absences are more likely to occur than false presences and, 

consequently, commission errors should not weigh as much as omission errors. To deal with 

this, we decided to select the pseudo-absences outside the area predicted as suitable by the 

SRE model, in order to minimize the probability of false absences (see Appendix 2). Defining 

also a total sample size (presences and pseudo-absences) similar for all species also helped 

facing this problem. A species with a restricted number of presence records is likely absent 

from most of the rest of Africa, so that a high number of pseudo-absences can be considered 

realistic. On the opposite, a species with widespread numerous presence records (e.g. 

Swallow, Yellow Wagtail) are likely present in most of Africa, and a low number of pseudo-

absences should minimize the creation of false absence data. 

Lastly, according to Lobo et al. (2008), accuracy measures proposed in the literature 

can be used to compare techniques for the same species at the same extent. In this case, 

instead of using only the AUC, they propose that sensitivity and specificity should be also 

reported, so that the relative importance of commission and omission errors can be considered 

to assess the method performance. The authors said they cannot recommend any useful 

method to compare model performance among species. For the purpose of producing 

consensus maps by comparing models obtained for a given species at a fixed spatial scale, we 

are clearly falling within these cases, and we report sensitivity and specificity to Appendix 3. 

 



Variations among models, scenarios, sample size 

In order to study the relative performances of the different niche modelling techniques, we 

considered AUC calculated from the modelled present winter ranges. AUC values varied 

significantly between niche modelling techniques, with RF and GBM being the best 

performing models, followed by GAM and ANN, and GLM (Fig. S1). The mean performance 

of all models is good, with only a few cases with AUC values below 0.7.  

 

Figure S1. Box plot of AUC values obtained for all present predictions according to the 

climate suitability model used. Median, first and third quartiles, lower and upper adjacent 

limits are depicted, as well as outlying values. n = 320 AUC values per model, obtained by 

predictions for 64 species with each of the 5 GCMs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2 reports on the frequency a niche modelling technique was chosen by the 

consensus method, and confirms that RF, GBM, GAM, ANN and GLM are the 5 best 

performing models, used in more than 75% of the ensemble forecasts. Figure S3 shows the 

mean AUC according to the niche modelling technique and to the number of presence data 

available per species. Even though the comparison of AUC between species could arise some 

problems (Lobo et al. 2008) the gathering of species with close number of presence data 

eliminates most of the flaws and can bring some information. This underlines that the models 

behave in different ways according to the number of data. For example, the relative bad 



performance of the CTA model seems to be due to a bad performance for species with less 

than 200 presence data. Moreover, this figure shows that for the species for which less than 20 

presence data were available, there are always at least 5 techniques with a mean AUC over 

0.85, making it possible to keep species with down to 6 occurrence points. Besides, the low 

performance of a few models when too few presence data was available further justified, if 

needed, the choice for a consensus method that excluded, for each species and each climate 

scenario, the 4 least performing models. 

When observing the distribution of the ratio of range sizes (log-transformed) for each 

of the 9 models (Figure S4), it appears that the ANN model predicted smaller variations in 

winter ranges (smaller standard deviation with the same mean).  

 

 

Figure S2. Frequency and selection rank of the climate suitability model that have been 

selected by the concensus method 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3. Means of the AUC values obtained for each climate suitability model according to 

the number of available presence data. Each dot is the average of at least five predictions 

corresponding to the 5 general circulation models, multiplied by the number of species with 

such sample size (see Appendix 4 for details of sample size per species).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Distribution of the log-ratio of predicted future and present range sizes according 

to the climate suitability model used. 

 

 

 

 

 

 

 

 

 

 

 

 

 



An important issue regarding niche modelling is the variability of results when using 

different modelling techniques (Araújo et al. 2005; Thuiller 2004; Pearson et al. 2006; 

Thuiller et al. 2004). Uncertainty can also ensue from variability in climate change 

projections (Appendix 5). Nevertheless, the use of ensemble forecast techniques seems to be a 

good way of reducing these problems (Araújo et al. 2005; Thuiller et al. 2005). Therefore, in 

this study 9 different modelling tools were used, and the variability across their performances 

is another good example showing the importance of not considering only one model (see the 

case of the SRE model, similar to the well-known BioClim model). The use of a consensus 

method considering the 5 best models out of the 9 used shows that the best performing models 

are not always the same for different species, even if some of them (RF, GBM, GAM, ANN 

and GLM) generally perform better. The performance also varies according to the species 

under study and the number of available presence records, corroborating results of other 

studies (Elith et al. 2006) and highlighting the importance and relevance of using several 

modelling tools (Araújo & New 2007). 
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Appendix 2. Assessing the effects of pseudo-absences and choice of the method 

 

We aimed at testing the robustness of the modelled distributions depending on how we 

defined pseudo-absences, in order to decide which method was more appropriate. We tested 2 

different methods for creating pseudo-absences. For both methods, the total number of 

presences and pseudo-absences was fixed to 2000, which is one sixth of the total considered 

area. We thus consider that a species recorded in many pixels of the study area would 

certainly be absent from a small number of pixels across the rest of Africa (because it is a 

‘common’ species with a widespread distribution), whereas a species with a small sample size 

is more likely to be absent from most of Africa, because it has not been recorded widely. The 

parameter we tested was the way of creating the pseudo-absences, which are either picked 

randomly in any points where the species was not recorded or in the area considered 

unsuitable for the species according to the surface range envelop (Le Maître et al., 2008) 

model. SRE (Busby 1991) is an envelope-style method that characterizes sites that are located 

within the environmental hyper-space occupied by a species. For both methods, the analysis 

was fully conducted as previously described. In order to compare the accuracy of the 

modelled distributions, we tested for a difference in the mean AUC of the models selected for 

a species. We also look for a difference in AUC calculated from the independent set of data 

digitized from the volumes of “The Birds of Africa” series (Keith & Fry 1992-2004). 

 There was no significant difference between the independent AUC (paired t-test, 

t=1.68, df=62, p=0.098). However, regarding the mean AUC calculated from our data of the 

selected models, the modelled distributions obtained when picking the pseudo-absences 

randomly out of the SRE model turned out to be more accurate (paired t-test, t=-4.89, df=63, 

p<0.001). Therefore, the results presented in the study are those obtained when using the SRE 

model to choose the pseudo-absences. 
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Appendix 3. Model accuracy: average ± standard error of AUC values obtained for each 

species when predicting the present distribution of climate suitability, considering all 

modelling techniques (first column) or only the 5 retained in the ensemble forecast framework 

(second column). The fifth column presents AUC calculated from an independent set of data 

(as described in Appendix 1), the last two columns providing the sensitivity and the 

specificity related. 

Latin name English name 
AUC, all 

models 

AUC, 

ensemble 

forecast 

models 

AUC 

(independent 

data) 

Sensitivity Specificity 

Acrocephalus arundinaceus Great Reed Warbler 0.974 ± 0.024 0.990 ± 0.003 0.942 0.841 0.865 

Acrocephalus griseldis Basra Reed Warbler 0.935 ± 0.050 0.963 ± 0.011 0.990 0.857 0.974 

Acrocephalus paludicola Aquatic Warbler 0.827 ± 0.147 0.920 ± 0.043 - - - 

Acrocephalus palustris Marsh Warbler 0.970 ± 0.023 0.981 ± 0.005 0.952 0.588 0.966 

Acrocephalus schoenobaenus Sedge Warbler 0.970 ± 0.028 0.988 ± 0.004 0.933 0.797 0.892 

Acrocephalus scirpaceus European Reed Warbler 0.912 ± 0.062 0.955 ± 0.010 0.909 0.838 0.829 

Anthus campestris Tawny Pipit 0.935 ± 0.036 0.960 ± 0.012 0.930 0.644 0.959 

Anthus cervinus Red-throated Pipit 0.921 ± 0.041 0.953 ± 0.017 0.876 0.537 0.883 

Anthus trivialis Tree Pipit 0.941 ± 0.042 0.970 ± 0.006 0.941 0.757 0.916 

Calandrella brachydactyla Short-toed Lark 0.907 ± 0.066 0.948 ± 0.018 0.847 0.256 0.981 

Delichon urbicum House Martin 0.980 ± 0.016 0.990 ± 0.003 0.909 0.543 0.942 

Emberiza caesia Cretzsmar’s Bunting 0.900 ± 0.089 0.952 ± 0.025 0.983 0.707 0.988 

Emberiza hortulana Ortolan Bunting 0.880 ± 0.095 0.935 ± 0.029 0.873 0.371 0.979 

Ficedula albicollis Collared Flycatcher 0.950 ± 0.049 0.972 ± 0.009 0.932 0.572 0.969 

Ficedula hypoleuca Pied Flycatcher 0.918 ± 0.054 0.954 ± 0.020 0.966 0.683 0.971 

Ficedula semitorquata Semi-collared Flycatcher 0.926 ± 0.088 0.971 ± 0.022 0.988 0.551 0.992 

Hippolais icterina Icterine Warbler 0.982 ± 0.012 0.991 ± 0.003 0.953 0.581 0.968 

Hippolais languida Upcher’s Warbler 0.947 ± 0.048 0.969 ± 0.008 0.985 0.785 0.975 

Hippolais olivetorum Olive-tree Warbler 0.958 ± 0.030 0.975 ± 0.010 0.978 0.877 0.946 

Hippolais polyglotta Melodious Warbler 0.915 ± 0.055 0.949 ± 0.020 0.988 0.734 0.993 

Hirundo rustica Swallow 0.757 ± 0.130 0.840 ± 0.054 0.998 0.947 0.896 

Irania gutturalis White-throated Robin 0.980 ± 0.028 0.994 ± 0.003 0.983 1.000 0.972 

Lanius collurio Red-backed Shrike 0.917 ± 0.087 0.959 ± 0.019 0.998 0.923 0.884 

Lanius isabellinus Isabelline Shrike 0.987 ± 0.017 0.996 ± 0.001 0.972 0.370 0.971 

Lanius minor Lesser Grey Shrike 0.933 ± 0.028 0.951 ± 0.012 0.886 0.985 0.938 

Lanius nubicus Masked Shrike 0.987 ± 0.011 0.994 ± 0.003 0.993 0.822 0.874 



Lanius senator Woodchat Shrike 0.942 ± 0.050 0.973 ± 0.006 0.903 0.808 0.820 

Locustella fluviatilis River Warbler 0.930 ± 0.055 0.968 ± 0.016 0.914 0.966 0.948 

Locustella luscinioides Savi’s Warbler 0.919 ± 0.046 0.949 ± 0.017 0.989 0.584 0.901 

Locustella naevia Grasshopper Warbler 0.881 ± 0.102 0.938 ± 0.036 0.885 0.288 0.986 

Luscinia luscinia Thrush Nightingale 0.787 ± 0.089 0.840 ± 0.064 0.908 0.878 0.965 

Luscinia megarhynchos Nightingale 0.962 ± 0.036 0.981 ± 0.006 0.985 0.740 0.879 

Luscinia svecica Bluethroat 0.940 ± 0.039 0.966 ± 0.012 0.922 0.495 0.969 

Melanocorypha bimaculata Bimaculated Lark 0.871 ± 0.084 0.926 ± 0.029 0.896 0.343 1.000 

Monticola saxatilis Rock Thrush 0.855 ± 0.158 0.949 ± 0.070 0.986 0.811 0.734 

Monticola solitarius Blue Rock Thrush 0.942 ± 0.024 0.959 ± 0.013 0.839 0.389 0.915 

Motacilla alba White Wagtail 0.904 ± 0.067 0.944 ± 0.022 0.745 0.475 0.940 

Motacilla cinerea Grey Wagtail 0.817 ± 0.074 0.925 ± 0.022 0.851 0.823 0.888 

Motacilla flava Yellow Wagtail 0.930 ± 0.034 0.954 ± 0.016 0.922 0.945 0.914 

Muscicapa striata Spotted Flycatcher 0.962 ± 0.038 0.985 ± 0.005 0.970 0.974 0.913 

Oenanthe deserti Desert Wheatear 0.983 ± 0.022 0.995 ± 0.002 0.979 0.253 0.936 

Oenanthe hispanica Black-eared Wheatear 0.938 ± 0.040 0.960 ± 0.007 0.739 0.522 0.949 

Oenanthe isabellina Isabelline Wheatear 0.917 ± 0.054 0.953 ± 0.014 0.917 0.493 0.938 

Oenanthe oenanthe Common Wheatear 0.956 ± 0.025 0.970 ± 0.008 0.818 0.474 0.827 

Oenanthe pleschanka Pied Wheatear 0.949 ± 0.032 0.971 ± 0.008 0.776 0.596 0.982 

Oenanthe xanthoprymna Kurdish Wheatear 0.952 ± 0.040 0.972 ± 0.007 0.967 0.117 1.000 

Oriolus oriolus Golden Oriole 0.890 ± 0.145 0.984 ± 0.020 0.944 0.695 0.900 

Phoenicurus phoenicurus Common Redstart 0.979 ± 0.018 0.990 ± 0.004 0.934 0.665 0.925 

Phylloscopus bonelli Bonelli’s Warbler 0.941 ± 0.035 0.964 ± 0.008 0.933 0.633 0.989 

Phylloscopus collybita Chiffchaff 0.947 ± 0.048 0.972 ± 0.014 0.979 0.417 0.933 

Phylloscopus sibilatrix Wood Warbler 0.941 ± 0.042 0.967 ± 0.013 0.722 0.992 0.833 

Phylloscopus trochilus Willow Warbler 0.937 ± 0.049 0.977 ± 0.011 0.973 0.952 0.894 

Ptyonoprogne rupestris Crag Martin 0.984 ± 0.023 0.896 ± 0.001 0.973 1.000 0.991 

Riparia riparia Sand Martin 0.963 ± 0.023 0.981 ± 0.005 0.858 0.619 0.831 

Saxicola rubetra Whinchat 0.943 ± 0.042 0.969 ± 0.016 0.921 0.844 0.853 

Sylvia atricapilla Blackcap 0.916 ± 0.049 0.949 ± 0.014 0.864 0.590 0.856 

Sylvia borin Garden Warbler 0.971 ± 0.032 0.989 ± 0.004 0.937 0.929 0.797 

Sylvia cantillans Subalpine Warbler 0.928 ± 0.063 0.965 ± 0.013 0.963 0.673 0.976 

Sylvia communis Common Whitethroat 0.959 ± 0.027 0.977 ± 0.008 0.916 0.756 0.888 

Sylvia curruca Lesser Whitethroat 0.909 ± 0.075 0.949 ± 0.015 0.870 0.395 0.959 

Sylvia hortensis Orphean Warbler 0.921 ± 0.066 0.960 ± 0.020 0.914 0.532 0.957 

Sylvia mystacea Menetries’ Warbler 0.880 ± 0.067 0.916 ± 0.035 0.922 0.741 0.977 



Sylvia nisoria Barred Warbler 0.934 ± 0.052 0.962 ± 0.017 0.990 0.870 0.974 

Sylvia rueppelli Ruppell’s Warbler 0.940 ± 0.063 0.972 ± 0.010 0.948 0.702 0.987 

 

 



Appendix 4. The following table gives, for each studied species (n = 64), the sample size of 

the presence data, the size of the predicted present range, the ratio between the future and the 

present ranges, the overlap between these two ranges as a proportion of the predicted present 

range, and the potential range shift (in km) as the distance between centroids of predicted 

present and future ranges. Even though an increase of the geographical range is not possible 

with the no-dispersal hypothesis, range overlaps > 1 occur as range sizes were estimated using 

indices calculated with suitability probabilities. 

 

Species 

Presence 
data 

Present 
range size 

(× 104 km2) 

Ratio of 
range sizes 

Range 
overlap 

Range 
shift (km) 

Acrocephalus arundinaceus 278 3608 0,88 0,81 327 

Acrocephalus griseldis 41 145 0,66 0,52 315 
Acrocephalus paludicola 10 108 8,53 1,29 1397 
Acrocephalus palustris 165 567 0,31 0,30 672 
Acrocephalus schoenobaenus 237 3773 0,79 0,71 313 

Acrocephalus scirpaceus 65 2281 1,05 0,97 200 
Anthus campestris 64 721 1,41 0,96 472 
Anthus cervinus 56 930 1,62 1,09 193 
Anthus trivialis 102 1753 0,81 0,70 339 

Calandrella brachydactyla 35 229 4,20 1,45 1188 
Delichon urbicum 497 2438 0,50 0,49 165 
Emberiza caesia 23 105 5,17 0,94 553 
Emberiza hortulana 20 147 0,27 0,18 1413 

Ficedula albicollis 44 366 0,03 0,03 509 
Ficedula hypoleuca 39 484 2,70 1,23 1201 
Ficedula semitorquata 16 148 0,03 0,03 655 
Hippolais icterina 347 1249 0,23 0,22 698 

Hippolais languida 55 256 0,62 0,50 91 
Hippolais olivetorum 71 495 0,33 0,24 657 
Hippolais polyglotta 27 331 2,85 1,12 1283 
Hirundo rustica 1201 5568 0,50 0,50 252 

Irania gutturalis 39 212 0,22 0,22 68 
Lanius collurio 758 2757 0,18 0,18 631 
Lanius isabellinus 58 399 0,69 0,55 163 
Lanius minor 598 1395 0,21 0,21 717 

Lanius nubicus 90 1005 1,92 1,11 624 
Lanius senator 71 1715 1,56 1,20 173 
Locustella fluviatilis 35 503 0,34 0,31 410 
Locustella luscinioides 29 605 2,71 1,38 889 

Locustella naevia 15 79 10,82 0,99 544 
Luscinia luscinia 103 598 0,08 0,06 287 



Luscinia megarhynchos 50 1155 1,18 1,00 127 

Luscinia svecica 24 402 0,94 0,69 502 
Melanocorypha bimaculata 6 23 5,85 0,97 1152 
Monticola saxatilis 116 2024 0,77 0,73 512 
Monticola solitarius 36 444 1,49 0,70 1359 

Motacilla alba 36 557 2,22 1,10 280 
Motacilla cinerea 80 660 1,43 0,79 745 
Motacilla flava 269 5283 0,85 0,85 96 
Muscicapa striata 824 4556 0,42 0,42 191 

Oenanthe deserti 53 434 1,61 1,04 113 
Oenanthe hispanica 43 425 1,56 1,05 72 
Oenanthe isabellina 133 871 0,57 0,51 316 
Oenanthe oenanthe 103 1587 1,29 0,92 57 

Oenanthe pleschanka 90 382 0,92 0,66 446 
Oenanthe xanthoprymna 6 9 0,51 0,13 200 
Oriolus oriolus 449 2627 0,20 0,20 463 
Phoenicurus phoenicurus 75 879 0,74 0,43 806 

Phylloscopus bonelli 34 327 2,43 1,32 325 
Phylloscopus collybita 65 798 0,85 0,53 793 
Phylloscopus sibilatrix 53 1999 1,40 1,14 256 
Phylloscopus trochilus 806 5119 0,61 0,61 158 

Ptyonoprogne rupestris 10 42 3,96 0,82 267 
Riparia riparia 253 2562 0,62 0,56 359 
Saxicola rubetra 75 1549 0,86 0,78 136 
Sylvia atricapilla 50 899 0,94 0,79 159 

Sylvia borin 323 4199 0,84 0,75 521 
Sylvia cantillans 41 419 1,97 1,24 328 
Sylvia communis 213 2273 0,89 0,79 475 
Sylvia curruca 35 369 1,05 0,63 730 

Sylvia hortensis 29 350 2,89 1,46 711 
Sylvia mystacea 23 141 2,83 0,84 1401 
Sylvia nisoria 33 232 0,49 0,48 175 
Sylvia rueppelli 28 174 0,22 0,20 382 
 

 



Appendix 5. Climate models and climate scenarios variability 

 

The distribution of one of our impact estimate according to general circulation models and 

SRES climate scenarios indicates that average values are similar, but distribution tails are 

different. Therefore the different general circulation models and SRES scenarios did not 

influence the average changes in range size, but influenced the intensity of the increases or 

decreases in range. Predictions obtained with the BCM2 and MK3 models showed a less 

important effect of the climate change over the wintering ranges variations (Figure S5). 

Scenario A2 makes predictions with larger variations than the A1 scenario, the A1 scenario 

itself giving larger variations than the B1 scenario (Figure S6). Nevertheless, this variability 

regarding climate models and scenarios underlines the importance of taking these ensembles 

into account, in order to improve the predictions accuracy. IPCC SRES scenarios A1, A2 and 

B1 reflect the potential impact of different assumptions about demographic, socio-economic 

and technological development on the release of greenhouse gases. The A1 scenario describes 

a globalized world with rapid economic growth and global population that peaks in mid-

century and declines thereafter, and it assumes a rapid introduction of new and more efficient 

technologies. The A2 scenario describes a heterogeneous world with regionally oriented 

economic development. Per capita economic growth and technological change are slower than 

in the other scenarios. The B1 scenario describes a convergent world with global population 

that peaks in mid-century and declines thereafter, as in A1, but with a rapid change toward a 

service and information economy and the introduction of clean and resource-efficient 

technology. 

It can also be interesting to focus on the variance of our impact estimates across the 

GCMs for each species, because current GCMs show little agreement on patterns of rainfall 

change, particularly in sub-Saharan Africa. For every species and every GCM, the mean value 

of the shift, the ratio of range sizes and the range overlap was calculated, considering the 

different scenarios and the selected models. Figure S7 shows the correlation between the 

mean and the standard deviation across GCMs for the 3 impact estimates, each dot standing 

for a species. For each of the estimates, the variance increases with the mean. The average 

ratio between the standard deviation and the mean is 17% (range 5-39%) for the shift, 22% 

(range 1-62%) for the ratio of range sizes and 18% (range 2-66%) for the range overlap. 

Therefore, for some species the variance of the GCMs can lead to an important variance 

across the projected distributions. Nevertheless this uncertainty can only decrease with the 



improvement of the GCMs, and underlines the importance of the ensemble forecast technique 

considering several GCMs to obtain the central tendency. 

 

Figure S5. Distribution of the log-ratio between predicted present and future range sizes 

according to the general circulation models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Distribution of the log-ratio between predicted present and future range sizes 

according to the SRES scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S7. Relationships between the mean and the standard deviation of (a) the predicted 

shift in distribution, (b) the ratio of range sizes and (c) the range overlap across the 5 GCMs 

values for each species. 

 

 



Appendix 6. Trends analysis and phylogenetic non-independence of species 

 

Species are more or less phylogenetically related. Hence, the species studied might not 

represent independent points in statistical analyses, and results of linear models could be 

biased if not accounting for phylogenetic relatedness among species. Closely related species 

have a common evolutionary history, and niche conservatism in evolutionary times is often 

reported (e.g. Peterson et al. 1999), so multi-species statistical analyses on niche changes 

should consider potential phylogenetic biases. On the other hand, because closely related 

species tend to compete between each other, their distribution and niche breadth should show 

a greater difference than expected by chance. A correction for phylogenetic relatedness was 

considered in the models we performed to explain our three variables estimating potential 

impacts of climate change on winter ranges (change in range size, range overlap and range 

shift) by the initial location and size of the present predicted range. We used the Generalized 

Least Squares phylogenetic comparative method (Martins et al. 2002, Freckleton et al. 2002), 

with the ‘ape’ package of the R-software. We computed the phylogenetic tree of the species 

using the classification published by Jønsson & Fjeldså (2006) (see Figure S8 below for 

details), with the assumption that all branches in the phylogeny are of equal length. We ran 

GLSs with a model dependence linked to the phylogenetic tree assuming a Grafen correlation 

structure (as no branch lengths were available; Grafen’s method uses a Brownian approach 

but estimates branch lengths from the data). Results of these models are presented in Table 1 

included in the main text of the paper. Weighted Linear Models, without considering a 

phylogenetic correction, produced almost similar results. 
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Figure S8. Phylogenetic tree of the 64 studied bird species. The classification published by 

Jønsson & Fjeldså (2006) was used, with a few adaptations using: Aliabadian et al. (2007) for 

the Oenanthe wheatears, Wei et al. (2007) and Mundy & Helbig (2004) for the Lanius 

shrikes. No published phylogenetic study was available to place the White-throated Robin 

(Irania gutturalis) on the tree, so it was arbitrarily placed close to Phoenicurus phoenicurus 

because of common taxonomic knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 7. Barplots of the distribution of predicted changes in range size for the 64 species 

according to the three time intervals considered in the study. The first graph (a) considers that 

species would be able to disperse fully from predicted present range to predicted future range. 

The second graph (b) considers that species would not disperse and would occupy only the 

overlap between the two ranges. Even though an increase of the geographical range is not 

possible with the no-dispersal hypothesis, range overlaps > 1 occur as range sizes were 

estimated using indices calculated with suitability probabilities. 
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Appendix 8. Examples of output maps for a sample of species 

 

We present here different graphic outputs for three closely related species, the Ficedula 

flycatchers. For two of them, we predicted the largest range reductions (97%) and the smallest 

range overlaps (3%) between modelled present and future ranges. For all species, the first 

map represents the species winter range as published in the “The Birds of Africa” series 

(Keith et al. 1992-2004), including both core winter range and marginal areas. The red open 

dots indicate the record localities used in our models. Below this map, the four maps on the 

left present the predicted ranges obtained using the ensemble forecast framework and using 

the present and the three future climate projections data (for time intervals 1961-1990, 2011-

2030, 2046-2065 and 2080-2099), showing pixels with probability of suitability when the 

latter was above the retained threshold, the black pixel representing the centroid. The four 

maps on the right present the corresponding standard error of probabilites, as the unweighted 

standard error of the 25 (present) or 60 (future) distributions used in the consensus approach. 

Standard errors are shown without excluding probabilities below the retained threshold. 

 

Keith, S., Fry, C. et al. 1992-2004. The birds of Africa: Vol 4-7. Academic Press, London. 

 



Figure S9. Output maps for the Collared Flycatcher Ficedula albicollis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S10. Output maps for the Pied Flycatcher Ficedula hypoleuca.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S11. Output maps for the Semi-collared Flycatcher Ficedula semitorquata.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


