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In this supplementary note, we provide details of the numerical optimiza-
tion used for finding task-optimal sensory weights. To achieve this, we first
mathematically define stability (i.e., the constraints) and the objective func-
tion (i.e., the goal) for our model. We then provide an alternate graphical
representation of the optimization problem and its results using a 2D ‘fitness
landscape’.

1 Metrics for stability: “Survival times” and

“Success rates”

We first define stability for the noisy, time-delayed model so that it agrees
with the experimental notion of stability, namely, a compression was success-
ful so long as it did not slip for a finite period of time. Stability in linear
and nonlinear deterministic dynamical systems is a well-defined notion, ei-
ther in the sense of asymptotic or Lyapunov stability (Doyle et al., 1992;
Ogata, 2002; Guckenheimer and Holmes, 1983). For example, defining sta-
bility in the local sense (near a specific state of the system) is easily done
for a hyperbolic fixed point1 if the system under consideration is described
either by ordinary differential equations (Doyle et al., 1992; Ogata, 2002;

1The term hyperbolic refers to the requirement that none of the eigenvalues of the
linearization near the fixed point of interest lie on the imaginary axis. In other words, the
system can be stable or unstable in different directions, but not marginally stable in any
direction.

1



Guckenheimer and Holmes, 1983) or by delayed differential equations (i.e.,
systems with time-delay) (Kolmanovskii and Nosov, 1986; Kolmanovskii and
Myshkis, 1999; Engelborghs et al., 2000, 2002). However, when there is some
source of noise in the dynamic system, stability is often defined in terms of
stationary distributions, i.e., using steady-state distributions of time spent
in various parts of the phase space of the dynamical system. For some dy-
namical systems that are modeled using stochastic differential equations, the
stationary distribution can be analytically derived using the Fokker-Planck
equations (Soize, 1994). However, for most complex dynamical systems, the
true distributions are approximated using statistical histograms that are ob-
tained through large ensemble simulations of the given stochastic dynamic
system. For example, one could define stability for a noisy system based
on distributions of the time spent by trajectories of a stochastic system in
different parts of its phase space (Arnold, 1998). Numerically, this could be
calculated by simulating large ensembles of the noisy dynamic system and
thus obtaining histograms of time spent in different regions (if these distri-
butions converge to stationary distributions). Peaks in the distribution (i.e.,
“representative” locations) can then be called as “stable” points in the phase
space of the dynamical system.

However, in the context of our system, there is an alternate “natural”
definition of stability that arises from the task requirement for subjects in the
experiments. We called the experimental behavior as “stable” or “successful”
if the subjects could prevent the spring from slipping for a finite time period
(7s). This definition of “success” in our task naturally lends itself to “be
studied in the context of a survival, or first passage, time problem” (Cabrera
and Milton, 2004), terms that we define below.

1.1 Definitions of success rate and survival time

The first observation is that if a trajectory (time-series of θ – rotation
angle of the spring’s endcap; Figure 1, left) leaves the domain of attraction
(region enclosed by dashed red curves in Figure 1 on Page 4) and never
returns inside it during the 7s period (let us name it T ∗), then it almost
certainly reached one or the other undesirable stable fixed points (at θ ≈
0.5rad; solid red curves in Figure 1) and thus, the spring “slipped”. So, we
can define ‘success-rate’ (psuccess) as the probability that the time (texit) at
which the θ trajectory exits the domain of attraction (to never return again)
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is greater than T ∗ (the desired duration of the hold phase, namely 7s).

texit = min {T ; such that θ(t > T ) /∈ [θ0 − δθ, θ0 + δθ]} (1)

psuccess = p(texit ≥ T ∗) (2)

where, δθ defines the domain of attraction and psuccess is the ‘success-rate’.
The time texit is called the ‘survival time’. Based on approximate estimates
(not shown) from experimental data that after training subjects slipped in
approximately 20% of the trials, we chose a nominal value of p∗ = 0.8 for
the success-rate to define a “successful compression” in our model. The
utilization of p∗ in our model will become clear when we define Fs below. For
experimental trials, Fs is the maximal sustained load for 7s. Nevertheless,
it is important to note that in our simulations we calculate psuccess by using
large ensembles of simulations and calculating the fraction of the ensemble
that are ‘stable’ (psuccess) in the sense that texit ≥ T ∗.

1.2 Definition of Fs in the model

For given sensory weights, the success rate (psuccess) depends on the value
of Fs. Symbolically, psuccess = psuccess(Fs)|(ω1,ω2,ω3), i.e., for given sensory
weights, psuccess is a well-defined function of Fs. Hence, we can define Fs for
a successful compression in our model as the solution to the ‘root finding’
problem,

psuccess(Fs)|(ω1,ω2,ω3) = p∗ (3)

Numerically, we implemented this root finding problem using an adapted
version of the Newton-Raphson method. Note that by defining Fs in this
manner, it is implicitly (through the definition of psuccess) an expected value,
i.e., a metric of average performance and not single-trial performance. We
have thus explained how Fs is defined. We will explain how to calculate
sensory weights (i.e., (ω1, ω2, ω3)) that maximize Fs in Section 2 below.

1.3 Numerical integration of stochastic delay differen-
tial equations

Numerical integration of the one-dimensional stochastic delay differential
equation (SDDE) was carried out using a simple Euler integration scheme
(Küchler and Platen, 2000). As shown by Küchler and Platen (2000), for the
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Figure 1: The loci of stable (solid green line) and unstable / undesirable
(red dashed / dotted curves) equilibria for the thumb + spring + nervous
system’s closed loop dynamics without noise or time-delays as the spring
is compressed. This figure is a succinct description of the underlying de-
terministic (no time-delays / noise) dynamics of the subcritical pitchfork
bifurcation’s normal form equation.
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case of additive noise, the Euler integration scheme has a strong order of con-
vergence 1.0. The term ‘strong order’ just refers to the fact that if the ‘true’
solution to the SDDE was known for a specific instance of the noisy processes
in the system, then, with smaller and smaller time-steps, the numerically in-
tegrated solution converges to the true solution. This is different from weakly
convergent numerical techniques, where the average of some function of the
solution converges to the ‘true’ value, but each individual solution might
itself not converge. We will not say more about numerical techniques for
integrating SDDEs since the paper by Küchler and Platen (2000) and the
references cited by them provide a good reference for numerical integration
of SDDEs.

2 Numerical optimization: sensory weights

that maximize Fs

We now outline the numerical optimization procedure used to compute
task-optimal sensory weights. There are only three sensory weights that need
to be found by our optimization routine that maximizes Fs. Given the addi-
tional constraint that the sum of the sensory weights is one, the optimization
problem reduces to a 2-parameter optimization problem, namely,

max
ω1,ω2,ω3

Fs such that
3∑

i=1

ωi = 1 and psuccess(Fs)|ω1,ω2,ω3 = 0.8 (4)

This is amenable to a global parameter search. We discretized the plane
defined by ω1 + ω2 + ω3 = 1 in the positive octant of the space of sensory
weights using a fine grid and numerically calculated Fs at each grid point.
Thus, we found task-optimal performance and sensory weights for every sen-
sory occlusion condition.

3 Sensory weights that minimize the effects

of noise alone

To quantify the impact of time-delays on sensory weighting, we per-
formed simulations using noise-minimizing sensory weights in addition to
task-optimal sensory weights (that emerge from the combined effect of noise
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and time-delays. Any deficit in performance (Fs) and deviation from exper-
imental measurements that arise from using sensory weights that minimize
the effects of noise alone can then be attributed to time-delays. The sensory
weights that minimize the effect of noise alone are obtained using Bayesian
inference for static tasks, i.e.,

ωi =
1/σ2

i∑
j

(
1/σ2

j

) (5)

where, σ2
i are the variances associated with each sensory channel.

0

0.2

0.4

0.6

0.8

1

ω3
Vision

0 0.2 0.4 0.6 0.8 1
ω2

Non-digital

0

0.2

0.4

0.6

0.8

1

ω1
Thumbpad

No thumbpad sensation

No vision

2.7

2.8

2.9

3

3.1

3.2

Fs (N)

Figure 2: Results of the global optimization using the 65ms simulation. The
edges corresponding to the no vision and no thumbpad sensation conditions
are marked in the figure. Note how tactile sensation dominates the landscape
when it is available (dark red region). Keep in mind that the vertices of the
triangular planar surface of feasible sensory weights are the case when one
sensory channel is used exclusively.

4 Fitness landscape representation of simula-

tion results

The results of the global optimization are shown as contour plots for
both the 65ms simulation (Figure 2) and the 100ms simulation (Figure 3)
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Figure 3: Results of the global optimization using the 100ms simulation.
Note how the peak in Fs for the no thumbpad sensation condition shifts
slightly closer to the “vision corner” for the 100ms simulation compared to
the 65ms simulation (Figure 2).

as an alternate representation of the results presented in the main text to
clarify how the task-optimal sensory weights were found. The triangular
planar surface in the contour plots are the set of feasible sensory weights,
i.e., sensory weights that satisfy both the constraints ω1 + ω2 + ω3 = 1 and
ωi > 0 for i = 1, 2, 3. The color coding depicts Fs according to the definition
given in Equation (3) on Page 3 at each point on the plane.
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