Supplementary Material

SOLUTION STRUCTURE OF THE FACTOR H BINDING PROTEIN, A PROTECTIVE

ANTIGEN OF NEISSERIA MENINGITIDIS

*Address correspondence to: Rino Rappuoli Novartis Vaccines and Diagnostics. Via Fiorentina, 1, 53100 Siena, Italy. Phone +39 0577 243414. Fax +39-0577-243564 Email: <u>rino.rappuoli@novartis.com</u>; Lucia Banci, Magnetic Resonance Center (CERM) – University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy Phone +39 055 457 4263 Fax +39 055 457 4253 Email: banci@cerm.unifi.it

Fig. S1. 2D ¹⁵N-¹H HSQC spectrum (900MHz, 298K) of fHbp. The protein concentration was 0.5 mM, in 50 mM phosphate buffer pH 7.

Fig. S2. Solution structures of the fHbp (residues 11-255). The radius of the tube is proportional to the backbone RMSD of each residue. The secondary structure elements are shown: β -strands of the N-terminal domain are shown in cyan and helices in red, while β -strands of the C-terminal domain are in blue. When the residues of the secondary structure elements are superimposed, the backbone RMSD is 1.1 Å.

Fig. S3. Experimental ¹⁵N R₁, R₂ rates and heteronuclear NOEs of fHbp and spectral density functions $J(\omega_H)$, $J(\omega_N)$, J(0) as obtained from the ¹⁵N relaxation data. The experimental data are measured at 500 MHz and 298 K, on a 0.5 mM sample in 50 mM phosphate buffer pH 7.

Fig. S4. Number of meaningful NOEs per residue of the fHbp protein. White, light gray, dark gray and black bars indicate intra-residue, sequential, medium-range, and long-range connectivities, respectively.

Fig. S5. RMSD values per residue to the mean structure for the backbone (filled squares) and all heavy atoms (open circles) of the family of 30 conformers of fHbp after energy minimization (residues 14-255). The secondary structure elements are also reported at the top.

Fig.S6 Combined chemical shift differences ($\Delta\delta^{\text{comb}}$) between the isolated fHbp C-terminal domain(9;10), and the same stretch in the full length protein. The $\Delta\delta^{\text{comb}}$ are calculated from the experimental ¹H and ¹⁵N chemical shift variations ($\Delta\delta(^{1}\text{H})$ and $\Delta\delta(^{15}\text{N})$, respectively) measured between corresponding peaks in the two constructs, through the following equation

Fig. S7. Observed versus calculated residual dipolar couplings in the final structure refinement with the RDC constraints. The line represents the expected correlation (y = x).

The RDC values of the following residues were used for structure calculations: 10-12,21-22,26,39,43-46,48,51,56,59,65,66,68,72,75,87,88,90,94,100,101,104,109,110,118-120,122-

123, 126, 127, 129, 130, 135, 136, 142, 146, 147, 150, 158, 165, 171-

174,177,185,189,201,202,204,207,208,211,212,214-218,228,230-233,243,244,246

Experiments ^b	Dime	Dimension of acquired data			Spectral width			Refs
		(nucleus)			(ppm)			
	t_1	t_2	t ₃	F_1	F_2	F_3		
[¹ H- ¹ H]-NOESY ^c	976(¹ H)	2048(¹ H)		15	15		120	(11)
¹ H- ¹⁵ N-HSQC	192(¹⁵ N)	1024(¹ H)		40	14		4	(12)
¹ H- ¹³ C-HSQC	256(¹³ C)	2048(¹ H)		80	14		8	(13)
trhncocacb ^d	$112(^{13}C)$	54(¹⁵ N)	1024(¹ H)	75	41	14	40	(14)
trhncacb ^d	$112(^{13}C)$	54(¹⁵ N)	1024(¹ H)	75	41	14	32	(14)
trhnco ^d	80(¹³ C)	56(¹⁵ N)	1024(¹ H)	18	40	16	8	(15)
trhncaco ^d	80(¹³ C)	56(¹⁵ N)	1024(¹ H)	18	39	16	16	(16)
trhnca ^d	88(¹³ C)	52(¹⁵ N)	1024(¹ H)	14	41	75	16	(14)
trhncoca ^d	88(¹³ C)	52(¹⁵ N)	1024(¹ H)	14	41	75	32	(14)
hbhaconh	128(¹ H)	48(¹⁵ N)	1024(¹ H)	14	40	14	24	(17)
(Hb)Cb(CgCd)H	80(¹ H)	2048(¹³ C)		14	40		224	(18)
(H)CCH-TOCSY ^e	240(¹³ C)	80(¹³ C)	1024(¹ H)	14	80	80	8	(19)
¹⁵ N-edited [¹ H- ¹ H]-NOESY	240(¹ H)	56(¹⁵ N)	2048(¹ H)	15	41	15	8	(20);(13)
¹³ C-edited [¹ H- ¹ H]-NOESY ^e	192(¹ H)	64(¹³ C)	2048(¹ H)	14	80	14	16	(25))
¹³ C-edited [1H-1H]-NOESY ^f	128(¹ H)	56(¹³ C)	2048(¹ H)	14	24	14	8	(25)
¹⁵ N R ₁ ^g	256(¹⁵ N)	1024(¹ H)		40	14		8	(7;21)
$^{15}N R_2{}^{g}$	256(¹⁵ N)	1024(¹ H)		40	14		16	(7;21)
¹ H- ¹⁵ N NOE ^g	480(¹⁵ N)	$1024(^{1}H)$		40	14		32	(7;21)

Table C1 Acquisition parameters for NMP experiments performed on fulbe

^a number of acquired scans. ^b All the experiments were acquired on a 500, 700 and 900 MHz spectrometer equipped with a triple resonance cryoprobe at 298 K. All the triple resonance (TXI 5-mm) probes used were equipped with Pulsed Field Gradients along the z-axis. ^c The experiment was acquired in D_2O for the assignment of the aromatic protons. ^d The experiments were acquired on ¹⁵N ¹³C ²H sample. ^e The F2 carrier was at 39 ppm. ^f The F2 carrier was at 43 ppm. ^g The ¹⁵N longitudinal relaxation rates, R_1 , were measured using delays in the pulse sequence of 2.5, 35, 75, 125, 200, 370, 500, 675, 1000, 2000, and 3000 ms for all samples. The ¹⁵N transverse relaxation rates, R_2 , were measured using the CPMG sequence. The relaxation delays used were 16.96, 33.92, 50.88, 84.81, 118.72, 152.64, 169.60, 220.48, 254.40, 305.28 ms. The interscan delay (d1) was 3 s for R_1 and R_2 and 6 s for ¹H-¹⁵N NOE respectively. All 3D and 2D spectra were processed using the standard Bruker software TOPSPIN and analyzed through CARA and XEASY programs (22-24)

Table S2 ¹H, ¹⁵N and ¹³C resonance assignments for fHpb at 298 K, pH 7.0, in water solution. In total, the resonances of 80% of carbon atoms, 97% of nitrogen atoms and 99% of protons were assigned. Proton resonances were calibrated with respect to the signal of 2,2-dimethylsilapentane-5-sulfonic acid (DSS). Nitrogen chemical shifts were referenced indirectly to the ¹H standard using a conversion factor derived from the ratio of NMR frequencies. Carbon resonances were calibrated using the signal of dioxane at 69.4 ppm (298 K) as secondary reference.

aa	N (HN)	СО	Cα (Ηα)	Cβ (Hβ)	Others
ALA -9	128.5 (8.40)	177.3	52.2 (4.22)	19.3 (1.30)	
ALA-10	123.7 (8.34)	177.2	51.8 (4.15)	19.3 (1.26)	
ASP-11	119.2 (8.23)	176.4	53.7 (4.49)	40.6 (2.60 , 2.49)	
ILE-12	121.3 (7.99)	176.9	61.8 (4.01)	38.1 (1.84)	Cδ1 12.9 (0.76) Cγ1 26.8 (1.10 , 1.35) Cγ2 17.4 (0.80)
GLY-13	111.8 (8.44)	173.7	44.9 (3.81)		
ALA-14	123.2 (7.95)	178.0	52.4 (4.21)	19.3 (1.30)	
GLY-15	107.4 (8.35)	174.3	45.6 (4.02 , 3.77)		
LEU-16	117.6 (7.22)	178.2	57.9 (3.74)	40.7 (1.37 , 0.99)	Cδ1 24.9 (0.66) Cδ2 21.7 (0.18) Cγ 24.4 (1.28)
ALA-17	117.8 (7.86)	181.1	54.9 (3.94)	17.2 (1.38)	
ASP-18	118.4 (8.02)	177.9	56.3 (4.22)	39.3 (2.25 , 2.56)	
ALA-19	121.5 (8.21)	178.9	55.0 (3.95)	17.8 (1.42)	
LEU-20	113.4 (7.22)	177.5	55.5 (4.26)	42.2 (1.95 , 1.29)	Cδ1 23.3 (0.65) Cγ 26.0 (0.84)
THR-21	106.1 (7.62)	175.0	61.7 (4.39)	71.5 (4.14)	Cγ2 20.9 (1.15)
ALA-22	127.8 (8.93)	176.0	50.7 (4.62 , 6.50)	18.7 (1.34)	
PRO-23			61.5 (4.43)	31.8 (2.19, 1.85)	Cδ 50.1 (3.75, 3.55) Cγ 26.5 (1.92, 1.83)
LEU-24	121.0 (8.15)	176.4	55.5 (3.89)	40.9 (1.47 , 1.22)	Cδ1 16.2 (0.63) Cδ2 25.1 (0.72) Cγ 26.7 (1.37)
ASP-25	124.7 (8.76)	176.4	52.7 (4.63)	42.8 (2.24, 2.77)	
HIS-26			58.1 (4.27)	29.2 (3.08)	Ηδ2 6.92 Ηε1 7.71
LYS-27	118.4 (8.35)	177.4	56.3 (3.97)	30.9 (1.58)	Cε 40.9 (2.85) Cγ 23.7 (1.07, 0.97) Cδ 27.9 (1.51)
ASP-28	120.0 (7.45)	176.2	54.2 (4.31)	40.1 (2.56 , 2.44)	
LYS-29	121.9 (8.42)	177.4	56.3 (3.96)	31.9 (1.64)	Cδ 33.1 (1.56) Cγ 24.8 (1.42, 1.28) Cε 42.1 (2.54)
GLY-30	111.5 (8.61)	174.2	44.8 (3.56 , 3.52)		
LEU-31	127.2 (8.05)	177.9	55.9 (3.77)	44.4 (1.23 , 0.76)	Cδ1 26.9 (0.39) Cδ2 22.7 (0.71) Cγ 27.3 (1.54)
GLN-32	131.8 (9.18)	174.3	57.9 (3.44)	27.7 (2.02, 1.95)	Cγ 34.6 (2.19, 2.05) Nε2 112.5 (7.57, 6.57)
SER-33	108.9 (7.24)	171.1	56.8 (4.98)	64.6 (3.64 , 3.44)	
LEU-34	121.8 (8.01)	174.7	53.3 (4.37)	45.6 (1.15)	Cδ1 26.2 (0.37) Cγ 26.4 (1.24) Cδ2 26.2 (0.46)
THR-35	123.9 (8.81)	172.8	62.6 (4.05)	68.2 (3.85)	Cγ2 22.0 (0.93)
LEU-36	128.4 (8.66)	174.7	53.8 (4.15)	40.6 (1.87 , 0.81)	Cδ1 22.1 (0.47) Cδ2 25.5 (0.10) Cγ 25.0 (1.47)
ASP-37	123.2 (8.50)		54.7 (4.84)	43.1 (2.70 , 2.44)	
GLN-38	120.7 (10.45)	178.5	56.3 (3.81)	28.2 (1.89 , 1.42)	Cγ 33.7 (2.37, 2.27) Nε2 113.8 (7.50, 6.72)
SER-39	111.7 (8.52)	171.8	61.4 (4.08)	63.0 (3.79 , 3.56)	
VAL-40	116.0 (6.69)	172.3	60.4 (3.89)	32.3 (1.77)	Cγ1 21.3 (0.77) Cγ2 18.9 (0.59)
ARG-41	125.4 (8.18)	176.9	55.6 (4.18)	30.6 (2.15 , 1.67)	Cδ 42.4 (2.98) Cγ 27.1 (1.30, 1.50)
LYS-42	119.4 (8.49)	176.6	58.7 (3.78)	32.0 (1.64 , 1.48)	Cε 41.8 (2.84) Cγ 24.7 (1.43) Cδ 28.6 (1.52)
ASN-43	115.5 (8.51)	173.9	55.1 (4.44)	37.1 (3.12 , 2.82)	Νδ2 113.1 (7.52, 6.88)

GLU-44	118.7 (7.79)	175.3	54.8 (4.77)	32.3 (2.19, 1.78)	
LYS-45	117.1 (8.71)	174.3	52.8 (4.61)	35.2 (1.43)	Cδ 28.3 (1.52) Cε 42.3 (2.82) Cγ 24.0 (1.24
	125.2 (0.00)	172.0	52 ((5.04)	44.0 (1.74 1.02)	(1.20)
LEU-40	125.3 (9.09)	1/3.8	52.0 (5.04)	44.9(1.74, 1.03)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LYS-4/	129.8 (9.26)	1/5.0	53.9 (5.05)	33.0(1.72, 1.52)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
LEU-48	126.3 (8.95)	1/5.6	52.0 (5.46)	44.4 (0.89 , 0.84)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ALA-49	120.8 (8.80)	176.3	51.0 (5.30)	23.5 (1.36)	
ALA-50	120.7 (8.12)	176.3	53.0 (4.49)	23.7 (1.39)	
GLN-51	116.3 (9.04)	175.3	56.1 (3.77)	27.3 (2.25 , 1.89)	Cγ 34.0 (2.35, 2.31) Nε2 112.0 (7.53, 6.82)
GLY-52	105.4 (8.44)	173.1	45.0 (4.07 , 3.51)		
ALA-53	124.4 (8.15)	176.0	49.9 (4.77)	22.7 (1.41)	
GLU-54	116.7 (8.16)	174.2	54.3 (5.49)	34.3 (1.91, 1.75)	Cγ 32.9 (2.03)
LYS-55	122.9 (8.85)	172.9	56.4 (4.19)	34.7 (1.92, 1.73)	Cδ 29.2 (1.42) Cγ 23.9 (1.18)
THR-56	120.8 (7.91)	173.1	62.0 (4.91)	68.6 (3.69)	Cγ2 21.9 (0.94)
TYR-57	127.4 (9.43)	174.2	57.4 (4.49)	41.9 (2.75, 2.54)	Qδ 6.79 Qε 6.44
GLY-58	108.9 (9.15)	172.5	42.3 (3.54)		
ASN-59	117.3 (8.88)	176.3	57.1 (4.03)	39.7 (2.64 , 2.19)	
GLY-60	114.9 (8.95)	174.1	44.9 (4.22,		
ASD 61	122.0 (7.00)	1747	(3.33)	41 9 (2 15 2 97)	
ASP-01	122.0(7.99)	1/4./	57.2 (4.96)	41.8(5.13, 2.87)	
JELL 62	113.1(0.40) 126.4(0.00)	175.0	57.2(4.90)	(4.3(3.01, 3.30))	$C(S_1, 22, 2, (0, 20), C_2, 25, 0, (0, 40))$
ASN 64	120.4(9.00)	173.9	50.6 (4.30)	43.0(1.30, 1.04)	$C01 22.2 \ (0.29) \ C\gamma 23.9 \ (0.40)$
ASIN-04 THD 65	123.0(6.46) 1128(775)	173.9	50.0(4.73)	53.2(3.72, 2.00)	$C_{\rm W}2 = 23.5 \ (0.75)$
GLV-66	113.8(7.73) 114.4(8.87)	177.2	03.2 (4.77)	03.3 (3.83)	C \ 2 23.3 (0.75)
OL 1-00	114.4 (0.07)	175.5	3 72)		
LYS-67	112.6 (6.38)	176.3	54.3 (4.02)	32.2 (1.45)	Cε 42.0 (2.62) Cγ 27.8 (1.35)
LEU-68	116.7 (7.33)	176.3	52.5 (4.28)	40.6 (1.38)	Cδ1 22.4 (0.72) Cγ 30.2 (1.29)
LYS-69	119.8 (8.51)	175.9	55.0 (3.99)	32.4 (1.47)	Cδ 28.2 (1.48) Cε 41.9 (2.87, 2.81) Cγ 24.5
					(1.29, 1.19)
ASN-70	121.5 (8.08)	174.4	54.4 (3.84)	38.1 (2.41 , 2.16)	Νδ2 112.3 (7.46 , 6.74)
ASP-71	113.4 (9.22)	173.0	54.7 (3.69)	38.5 (2.75 , 2.86)	
LYS-72	113.4 (6.44)	174.7	53.1 (4.41)	36.1 (1.50 , 1.23)	Cε 39.3 (2.79) Cγ 23.4 (1.11, 1.04)
VAL-73	122.1 (8.68)	176.6	62.1 (4.19)	32.0 (1.71)	Cγ1 21.2 (0.39)
SER-74	127.0 (9.50)	172.2	58.3 (4.51)	64.0 (3.31)	
ARG-75	122.6 (7.85)	173.3	55.3 (5.03)	31.9 (1.64)	Cδ 41.8 (2.82) Cγ 28.8 (1.32)
PHE-76	118.1 (9.25)	175.8	55.2 (4.81)	43.6 (2.94)	Qõ 7.09 Qe 6.98
ASP-77	123.6 (9.14)	176.5	55.1 (5.36)	41.3 (2.81 , 2.69)	
PHE-78	119.7 (9.09)	174.0	54.9 (6.43)	42.5 (2.62 , 2.96)	Qδ 6.11 Qε 6.44 HZ 6.42
ILE-79	119.8 (8.62)	174.0	61.2 (4.33)	41.9 (1.59)	Cδ1 13.2 (0.70) Cγ1 27.5 (1.48, 0.92) Cγ2 18.0 (0.84)
ARG-80	128.4 (9.05)	174.9	54.4 (5.31)	33.7 (1.70)	Cγ 33.0 (1.54) Cδ 41.8 (1.13)
GLN-81	125.5 (9.30)	173.7	53.7 (5.56)	34.0 (1.75)	Cγ 34.1 (1.96) Nε2 109.9 (6.93, 6.55)
ILE-82	115.5 (8.59)	172.5	59.6 (4.58)	42.2 (1.65)	Cδ1 13.5 (0.74) Cγ1 26.7 (1.35, 0.93) Cγ2
GLU-83	124.9 (8.43)	175.6	54.8 (4.94)	30.5 (1.79 . 1.58)	C_{γ} 35.8 (1.58, 1.72)
VAL-84	127.0 (8.88)	175.7	61.4 (4.08)	34.0 (1.76)	Cγ1 20.5 (0.74)
ASP-85	129.4 (9.33)	175.8	55.1 (4.16)	38.9 (2.83 . 2.46)	
GLY-86	103.3 (8.57)	173.4	44.8 (3.99.		
			3.51)		
GLN-87	119.7 (7.75)	173.9	53.3 (4.48)	30.7 (1.95 , 1.83)	Cγ 32.9 (2.20, 2.15)

LEU-88	123.5 (8.42)	176.3	53.8 (4.63)	41.7 (1.47 , 1.12)	Cδ1 24.1 (0.65) Cδ2 23.0 (0.53) Cγ 26.7 (1.35)
ILE-89	127.2 (9.15)	175.7	59.4 (4.25)	39.6 (1.76)	Cδ1 11.7 (0.63) Cγ1 26.9 (1.26, 1.12) Cγ2
THR-90	123.1 (8.66)	172.9	62.6 (4.20)	68.6 (4.03)	Cy2 21.6 (1.03)
LEU-91	125.3 (8.97)	177.4	55.5 (4.26)	44.3 (1.42, 1.30)	Cδ1 25.4 (0.67)
GLU-92	116.7 (7.50)	172.7	54.7 (5.03)	33.7 (2.12, 1.96)	Сү 36.2 (2.41, 2.50)
SER-93	117.9 (8.95)	172.8	57.3 (4.25)	65.5 (3.89, 3.44)	
GLY-94	108.6 (6.93)	171.1	46.6 (3.69)		
GLU-95	128.2 (9.67)	173.2	54.8 (5.64)	34.3 (2.36, 2.30)	Сү 39.2 (2.15)
PHE-96	131.6 (10.37)	173.0	54.6 (5.05)	42.1 (2.82, 2.6)	Qδ 7.04 Qε 6.11
GLN-97	126.5 (8.69)	174.2	53.2 (4.96)	28.8 (1.97)	Cγ 32.9 (1.52) Nε2 109.5 (6.44, 7.10)
VAL-98	118.8 (8.68)	173.8	59.7 (4.57)	35.1 (1.57)	Cγ1 21.5 (0.41) Cγ2 20.0 (0.47)
TYR-99	127.6 (8.90)	173.3	56.9 (4.94)	40.8 (2.77)	Qδ 6.31 Qε 6.11
LYS-100	128.3 (5.81)		55.7 (4.25)	35.9 (1.48)	Cδ 28.4 Cγ 27.9
GLN-101	125.8 (8.44)	174.1	55.1 (5.03)	27.6 (2.27)	Сү 36.22 (2.13)
SER-102	117.7 (9.06)		63.0 (3.05)	63.2 (3.68)	
HIS-103	118.4 (10.12)		53.8 (4.41)	30.3 (2.23)	Ηδ2 6.52 Ηε1 7.73
SER-104	112.3 (7.24)		56.7 (4.41)	65.5 (2.82)	
ALA-105	116.8 (8.42)	173.2	51.4 (4.75)	22.3 (1.08)	
LEU-106	115.2 (8.38)	175.3	53.8 (5.55)	46.4 (1.71)	Cδ1 26.8 (1.00) Cδ2 27.4 (0.93) Cγ 28.0
THR-107	100 / (8 60)	172.5	57 1 (5 29)	71 3 (3 30)	(1.75) $C_{2}(2, 22, 8, (0, 72))$
$\Delta I \Delta_{-108}$	109.4 (8.09)	172.5	57.1(3.29) 51.0(4.37)	71.3(3.35) 23.4(0.95)	C 72 22.8 (0.72)
PHE_100	120.7(8.40)	174.2	56.6(4.71)	23.4(0.95)	$O_{0}^{0} 6 05 O_{0}^{0} 6 53 H7 7 44$
GLN_110	113.0(8.31) 124.5(9.83)	174.2	50.0(4.71)	(2.43)	$C_{22} 355 (250)$ No2 1160 (7.42 7.16)
ULN-110 THR_111	124.3(9.83) 126.8(9.57)	173.2	55.2(5.23)	29.2(2.27)	$C_{\gamma} = 22.7 (1.50)$
$\frac{11111111}{GLU_112}$	120.8(9.37) 1217(930)	1774.5	56.2(4.81)	31.3(2.12)	$C_{\gamma} 42 6 (2 44)$
GLU-112 GLN-113	121.7(9.30) 117.6(7.95)	174.0	53.2(4.01)	31.5(2.12) 32.5(2.03, 1.97)	$C_{\gamma} = 2.0 (2.14)$
$\frac{\text{OLN}-113}{\text{II E}-114}$	117.0(7.93) 115.0(8.97)	174.0	59.0(3.23)	32.3(2.03, 1.97)	C_{γ}^{γ} 55.4 (2.19) C_{γ}^{γ} 13.3 (0.76) C_{γ} 1 26.6 (1.41) C_{γ} 2.19.1
1111-1114	113.0 (0.97)	1/4.1	59.0 (4.91)	42.0 (1.04)	(0.89)
GLN-115	122.0 (7.42)	175.7	56.1 (4.41)	28.5 (2.14 , 1.97)	Cγ 33.1 (2.39, 2.23) Νε2 110.4 (7.40, 6.41)
ASP-116	125.6 (8.57)	176.7	53.5 (4.38)	41.2 (2.31 , 3.02)	
SER-117	120.7 (8.45)	174.8	60.8 (4.02)	62.6 (3.84)	
GLU-118	119.4 (8.25)	175.9	56.0 (4.04)	29.9 (1.65)	Сү 35.6 (2.04 , 1.88)
HIS-119	117.3 (7.42)	173.5	54.5 (4.61)	28.7 (2.98 , 2.91)	Ηδ2 7.15 Ηε1 7.70
SER-120	116.8 (8.40)	175.7	59.1 (4.18)	62.8 (3.78)	
GLY-121	112.2 (8.73)	173.5	44.7 (4.05 , 3 72)		
LYS-122	120.2 (7.80)	175.1	55.1 (4.46)	33.9 (1.81 . 1.76)	$C\delta = 27.7 (1.48 + 1.31) C\gamma 24.6 (1.25 + 1.20)$
MET-123	119.8 (8.35)	176.2	52.9 (5.08)	33.8 (1.76 , 1.82)	$C_{\gamma} 30.6 (2.45, 2.24) C_{\epsilon} 16.2 (1.47)$
VAL-124	118.5 (9.24)	174.0	59.1 (4.47)	34.4 (1.97)	$C_{\gamma}1$ 19.5 (0.77)
ALA-125	125.9 (8.33)	177.2	52.0 (4.62)	18.2 (1.27)	
LYS-126	126.1 (7.60)	172.6	56.0 (4.05)	34.5 (1.48)	Cδ 30.6 (1.99) Cγ 28.9 (1.55) Cε 41.7 (2.84)
ARG-127	122.8 (8.31)	176.3	55.6 (4.90)	28.3 (1.52)	Cγ 27.9 (1.64)
GLN-128	121.0 (7.53)	172.2	54.2 (4.54)	32.1 (2.02, 1.87)	Cγ 33.7 (2.18) Nε2 110.5 (7.26 . 6.81)
PHE-129	125.5 (8.62)	174.5	56.0 (6.04)	42.1 (3.14, 2.99)	Qδ 7.09 Qε 6.75
ARG-130	125.3 (8.02)	172.1	53.4 (4.37)	32.3 (1.45)	Cδ 42.0 (2.76) Cγ 27.0 (1.50)
ILE-131	121.9 (8.46)	175.5	58.3 (3.88)	35.7 (1.84)	Cδ1 8.5 (0.38) Cγ1 27.0 (1.12) Cγ2 17.5
			()		(0.79)
GLY-132	115.7 (8.81)	171.6	44.2 (4.06)		
ASP-133	123.7 (7.91)	174.1	54.8 (4.58)	45.4 (2.35 , 2.11)	

ILE-134	119.1 (8.26)	174.8	61.6 (4.39)	37.5 (1.83)	Cδ1 14.1 (0.78) Cγ1 26.6 (0.94) Cγ2 17.9
					(0.73)
ALA-135	129.3 (8.61)	173.4	50.6 (4.76)	23.3 (1.39)	
GLY-136	101.2 (7.51)	172.6	44.3(3.55, 4.42)		
GLU-137	121.0 (8.22)	174 9	53.1	28 3 (2 13 2 04)	$C_{y} = 343(2,21)$
HIS-138	124 2 (8 05)	175.4	579(477)	27 7 (3 43)	$H\delta^{2} 7 09 H\epsilon^{1} 8 15$
THR-139	125 3 (9.06)	174.2	63.2(3.86)	68 1 (3 19)	$C_{\gamma 2} = 22.1 (1.04)$
SER-140	121.8 (8.83)	176.7	58.0 (4.56)	63.0 (4.00 . 3.64)	
PHE-141	128.8 (9.60)	175.4	61.3 (3.95)	39.4 (2.60 , 2.51)	Οδ 6.81 . Οε 7.13
ASP-142	113.1 (8.02)	175.4	55.2 (4.35)	41.0 (2.83 . 2.35)	
LYS-143	117.7 (7.34)	175.6	54.1 (4.44)	32.5 (2.07, 1.46)	Cδ 30.2 (1.83, 1.59) Cε 42.6 (2.83) Cγ 24.6
	, , , , , , , , , , , , , , , , , , ,				(1.28, 1.17)
LEU-144	120.5 (6.70)	174.1	52.8 (3.90)	41.0 (1.12 , 1.25)	Cδ1 26.3 (0.62) Cδ2 22.1 (0.72) Cγ 25.7 (1.82)
PRO-145		172.7	62.7 (4.04)	30.1 (1.90, 0.93)	Cδ 49.6 (3.18, 2.27) Cγ 26.8 (0.67, 1.35)
GLU-146	119.1 (8.34)	176.0	56.1 (3.97)	30.1 (1.94 , 1.74)	Cγ 35.9 (2.14 , 2.10)
GLY-147	104.3 (7.24)	171.7	43.9 (3.92, 3 81)		
GLY-148	107.0 (8.24)	171.8	43.6 (3.71 , 4 35)		
ARG-149	117.8 (8.21)	175.0	54.2 (5.38)	33.0 (1.55)	Cδ 42.4 (2.99) Cγ 26.8 (1.41, 1.30)
ALA-150	126.6 (9.03)	175.0	50.7 (4.73)	23.4 (1.22)	
THR-151	117.9 (8.56)	171.9	62.0 (4.85)	69.7 (3.76)	Су2 21.2 (1.03)
TYR-152	126.1 (10.01)	174.6	55.8 (4.58)	40.1 (2.72 . 2.40)	Οδ 6.90 Οε 6.54
ARG-153	121.0 (8.86)	177.4	54.0 (5.40)	33.5 (1.90, 1.73)	Cδ 42.6 (3.13) Cγ 27.9 (1.63)
GLY-154	114.2 (8.92)	173.8	46.8 (4.82 ,		
	, , , , , , , , , , , , , , , , , , ,		4.42)		
THR-155	126.4 (9.06)	170.4	62.3 (4.71)	72.6 (3.18)	Сү2 21.1 (0.86)
ALA-156	127.5 (7.09)	174.0	48.8 (5.29)	22.6 (0.82)	
PHE-157	117.0 (8.54)	171.9	53.3 (5.44)	41.0 (3.23 , 2.48)	Qδ 6.86 Qε 6.69
GLY-158	108.4 (8.55)	173.1	42.6 (3.12 ,		
			4.0)		
SER-159	115.2 (7.61)	176.1	58.8 (3.42)	61.9 (3.57)	
ASP-160	124.8 (9.89)	175.2	55.4 (4.17)	39.2 (2.86 , 2.70)	
ASP-161	116.7 (7.52)	172.7	54.3 (4.57)	40.6 (2.49 , 2.29)	
ALA-162	128.2 (8.54)	177.7	49.9 (4.92)	17.5 (1.25)	
GLY-163	106.5 (8.41)	174.3	45.0 (4.29 , 3.89)		
GLY-164	106.4 (7.13)	173.9	45.2 (4.12 ,		
			3.64)		
LYS-165	123.9 (9.65)	174.4	53.5 (5.05)	34.6 (1.69)	Cδ 29.1 (1.56) Cγ 23.7 (1.45, 1.29)
LEU-166	126.3 (7.71)	174.8	52.7 (4.87)	44.6 (1.06)	Cδ1 25.3 (0.72) Cδ2 23.8 (0.60) Cγ 26.8 (0.33)
THR-167	123.0 (8.37)	172.1	61.8 (4.95)	70.2 (3.78)	Сү2 20.3 (1.06)
TYR-168	128.1 (9.17)	172.2	58.2 (4.77)	43.7 (2.41 , 2.21)	Qδ 6.57 Qε 7.26
THR-169	124.5 (8.71)	172.5	60.8 (5.40)	70.8 (3.59)	Cγ2 20.4 (0.89)
ILE-170	123.7 (8.93)	173.1	60.6 (4.31)	41.3 (1.21)	Cδ1 11.8 (0.55) Cγ1 27.1 (0.62) Cγ2 16.2 (- 0.33)
ASP-171	125.2 (8.37)	177.2	51.7 (4.75)	41.7 (2.80 , 2.31)	
PHE-172	123.6 (8.97)	176.9	61.5 (3.88)	37.4 (2.99 , 2.38)	Qδ 6.95 Qε 7.06 HZ 7.32
ALA-173	122.1 (8.27)	178.9	54.5 (4.32)	17.6 (1.53)	
ALA-174	118.8 (7.41)	176.6	51.2 (4.10)	18.3 (1.14)	

1 1/0 1/7/	1144 (7.01)	174 (57.0 (2.20)	20.1 (2.20. 1.00)	
LYS-175	114.4 (7.91)	174.6	57.0 (3.39)	30.1 (2.20 , 1.90)	$C\delta = 29.5 (1.61) C\gamma 25.8 (1.50)$
GLN-176	116.4 (7.63)	174.3	54.4 (5.41)	34.8 (1.73 , 1.66)	Cγ 34.2 (2.18) Nε2 111.9 (7.59 , 6.60)
GLY-177	110.2 (8.85)	170.8	44.6 (5.21,		
ASN 178	1127(764)	171.5	(4, 22)	41.5 (2.71. 2.50)	N82 114 1 (7 30 6 54)
$\frac{\text{ASIN}-170}{\text{CLV}170}$	112.7(7.04)	172.4	33.7 (4.22) 47.2 (4.40	41.3 (2.71, 2.30)	102 114.1 (7.30, 0.34)
GL I -1/9	100.7 (9.10)	1/2.4	47.2 (4.49, 4.08)		
LYS-180	121.8 (9.18)	172.5	56.6 (4.82)	35.4 (1.81 , 1.60)	Cδ 28.5 (1.37) Cε 41.6 (2.71) Cγ 23.5 (1.16, 0.89)
ILE-181	123.4 (8.35)	174.0	60.5 (4.58)	39.6 (1.69)	Cδ1 14.8 (0.56) Cγ2 17.9 (0.73)
GLU-182	122.3 (8.49)	175.4	53.4 (4.47)	35.5 (1.35)	Cγ 37.1 (1.89, 1.68)
HIS-183	109.6 (8.43)	176.0	57.5 (3.98)	27.4 (3.42, 3.34)	Ηδ2 6.71 Ηε1 7.76
LEU-184	124.4 (9.60)	178.8	56.0 (4.28)	39.9 (1.57 , 1.12)	Cδ1 28.3 (0.48) Cδ2 22.4 (0.53) Cγ 31.3
LYS-185	122.9 (10.00)	177.7	57.7 (3.68)	31.9 (1.65 , 1.58)	$C\delta = 29.0 (1.58, 1.50)$ Cγ 24.8 (1.55, 1.39) Cε 42.0 (2.90)
SER-186	115.2 (7.26)	173.1	54.6 (4.67)	62.7 (3.64, 3.56)	
PRO-187			65.4 (3.96)	32.1 (2.31 , 1.87)	Cδ 50.7 (3.76, 4.10) Cγ 27.2 (1.92, 1.99)
GLU-188	113.0 (8.08)	173.9	56.6 (3.01)	29.6 (1.66 , 1.38)	Сү 36.6 (1.98, 1.75)
LEU-189	112.9 (7.13)	175.6	53.8 (3.97)	41.2 (1.39)	Cδ1 20.7 (0.33) Cδ2 24.7 (0.72) Cγ 26.3 (1.24)
ASN-190	117.9 (6.95)	175.7	53.2 (4.60)	36.5 (2.74, 2.67)	Νδ2 112.4 (7.08)
VAL-191	113.3 (7.18)	174.9	59.8 (4.48)	33.0 (2.16)	Cγ1 21.9 (0.64) Cγ2 17.3 (0.44)
ASP-192	118.1 (8.83)	174.9	54.1 (4.78)	41.6 (2.41)	
LEU-193	123.1 (8.38)	171.1	52.3 (4.15)	38.2 (0.95, -0.06)	Cδ1 25.4 (0.20) Cδ2 22.6 (-0.03)
ALA-194	126.3 (8.22)	176.2	52.5 (4.10)	20.0 (1.40)	
ALA-195	122.0 (8.28)	178.1	51.8 (4.86)	17.4 (1.10)	
ALA-196	126.0 (8.82)	175.1	50.4 (4.63)	23.5 (1.21)	
ASP-197	118.6 (8.37)	176.0	54.0 (5.16)	41.7 (2.65 , 2.34)	
ILE-198	119.7 (7.92)	174.7	61.0 (4.32)	42.0 (1.49)	Cδ1 14.9 (0.60) Cγ1 27.1 (1.12) Cγ2 19.2 (0.93)
LYS-199	127.1 (9.18)	172.6	53.4 (4.53)	34.8 (1.54, 1.36)	Cε 41.8 (2.88) Cδ 27.7 (1.62) Cγ 24.5 (1.22)
PRO-200	· · · ·				
ASP-201	123.2 (8.39)	179.3	51.3 (4.55)	40.3 (2.5, 3.12)	
GLY-202			46.5 (3.43 ,		
			3.71)		
LYS-203	120.3 (7.74)	174.9	55.1 (4.12)	31.2 (0.58 , 1.16)	Cδ 28.5 (1.42, 1.32) Cγ 24.9 (1.08, 1.02)
ARG-204	111.8 (8.06)	175.2	56.9 (3.44)	26.6 (2.15 , 2.10)	Cδ 41.7 (3.17) Cγ 26.7 (1.57)
HIS-205	120.3 (8.53)	174.9	53.7 (4.77)	27.8 (3.14 , 2.82)	Ηδ2 6.50 Ηε1 7.60
ALA-206	123.2 (8.49)	175.8	52.2 (4.62)	19.8 (1.21)	
VAL-207	123.2 (9.17)	173.4	60.8 (4.98)	35.5 (2.05)	Cγ1 21.2 (0.77) Cγ2 19.0 (0.71)
ILE-208	122.7 (8.89)	174.7	60.8 (4.31)	41.6 (1.35)	Cδ1 13.5 (0.67) Cγ1 27.1 (1.22, 0.71) Cγ2 18.1 (0.65)
SER-209	122.1 (8.42)	173.0	55.7 (4.91)	64.4 (3.61, 3.53)	
GLY-210	110.5 (7.29)	172.5	45.2 (4.43 , 3.35)		
SER-211	116.5 (8.65)	172.9	58.8 (5.03)	64.4 (3.84 , 3.64)	
VAL-212	117.1 (7.40)	174.5	58.8 (5.04)	30.5 (1.62)	Cγ1 24.4 (0.68) Cγ2 20.7 (0.61)
LEU-213	124.2 (8.96)	175.5	52.6 (5.31)	45.6 (1.59, 1.03)	Cδ1 25.3 (0.73) Cδ2 22.9 (0.58) Cγ 27.3 (1.29)
TYR-214	120.2 (8.84)	176.0	56.9 (4.77)	41.7 (2.70, 2.75)	Qδ 6.89 Qε 6.70
ASN-215	129.8 (9.29)	174.3	53.9 (4.00)	36.5 (2.21, 2.75)	Νδ2 111.6 (7.01 , 6.48)
GLN-216	106.4 (8.61)	173.5	57.9 (3.45)	26.1 (2.29 , 2.19)	Cγ 34.0 (2.14) Nε2 112.5 (6.68 , 7.39)
Research and the second se		•			

AT A 017	102 2 (7 (()	1764	50.0(1(1))	20.5(1.27)	
ALA-21/ GLU 218	123.3 (7.66)	1/6.4	50.8 (4.61)	20.5(1.37) 28.8(1.98, 2.00)	$C_{2}(2,3,0,2,2,6)$
ULU-218	122.0(0.71)	172.0	57.5 (4.55)	26.6(1.96, 2.09)	$C_{\gamma} = 50.2 (2.39, 2.20)$
LYS-219	126.9 (8.84)	1/3.8	53.1 (4.61)	34.2 (2.25 , 1.28)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
GLY-220	107.0 (7.93)	173.9	44.5 (5.47 ,		
			3.72)		
SER-221	117.3 (8.68)	171.0	56.8 (5.46)	66.7 (3.84 , 3.79)	
TYR-222	117.6 (8.96)	172.8	55.8 (5.39)	41.7 (2.63 , 2.43)	Qδ 6.30 Qε 6.20 HH 7.61
SER-223	115.6 (8.84)	173.1	56.6 (5.17)	64.5 (3.65 , 3.60)	
LEU-224	123.5 (9.30)	175.6	53.1 (4.75)	46.3 (1.18 , 0.93)	Cδ1 23.7 (-0.38) Cδ2 23.0 (-0.19) Cγ 25.4 (1.17)
GLY-225	109.0 (9.04)	171.5	43.8 (4.62 , 3.41)		
ILE-226	120.2 (6.85)	174.8	60.4 (4.62)	38.2 (1.37)	Cδ1 14.5 (0.71) Cγ 2 16.0 (1.00) Cγ1 27.8 (1.21)
PHE-227	128.2 (9.39)	175.1	58.1 (4.77)	42.5 (2.22, 2.81)	Qδ 6.57 Qε 6.72
GLY-228	104.6 (8.68)		42.4 (3.17,		
GLV 220			4.31)		
UL 1-229	1107(027)	1747	40.9 54 1 (4 20)	20.9(1.92, 1.04)	$C_{2}^{2} = 28.6 (1.50)$
LIS-230	110.7(0.57)	1767	51.0 (2.91)	30.8(1.82, 1.04)	C0 28.0 (1.50)
ALA-231	118.1(7.03)	1/0./	51.9(3.81)	10.1(1.10)	C_{1} 21 7 (2 24)
GLN-232	118.0 (9.39)	176.0	61.0 (3.88)	28.7 (1.84)	$C\gamma 31.7(2.24)$
GLU-233	116.6 (8.82)	174.9	54.3 (5.41)	33.8 (1.72)	$C\gamma 34.1(2.17)$
VAL-234	109.3 (8.34)	174.8	57.9 (5.54)	35.4 (1.47)	Cγ1 20.0 (-0.04) Cγ2 17.4 (0.04)
ALA-235	120.7 (8.47)	176.4	51.3 (4.94)	20.3 (1.05)	
GLY-236	111.1 (9.36)	170.1	46.2 (5.08, 4 02)		
SER-237	115 3 (8 89)	1714	56 5 (5 28)	66 4 (3 84 3 71)	
ALA-238	119.9 (9.08)	174.5	49.9 (5.15)	21.7(1.02)	
GLU-239	122.7(9.02)	174.1	54 8 (4 63)	31 4 (1 78)	$C_{\rm Y}$ 36 1 (2 04 1 87)
VAL-240	122.7 (9.02)	174.8	61 4 (4 39)	33.9 (1.61)	$C_{\gamma}^{2} = 214(0.65)$
UVS-241	127.6 (8.84)	174.5	56.0 (3.98)	321(145 164)	$C_{\rm F} = 21.4 (0.05)$
THR_242	127.0(0.04) 1145(721)	176.5	61 1 (4 36)	72 6 (4 28)	$C_{\gamma}^{2} = 21.3 (0.79)$
VAL -243	120.7(9.58)	176.2	64 7 (3 85)	31.0 (2.10)	$C_{12} = 21.5 (0.73)$
VAL-243	120.7(9.50) 115.6(7.57)	173.8	52.0(4.88)	30.2(2.10)	$N_{2}^{(1)} = 113.6 (6.86 + 7.58)$
$\frac{\text{ASIN-244}}{\text{CLV 245}}$	113.0(7.37) 107.7(7.26)	173.0	32.0 (4.88) 42.2 (4.54	39.2 (2.23, 2.89)	1102 115.0 (0.80 , 7.58)
GL 1-243	107.7 (7.30)	1/4.5	43.3 (4.34 , 3.73)		
ILE-246	122.7 (8.67)	176.9	61.1 (4.35)	36.9 (1.63)	Cδ1 12.2 (0.72) Cγ 1 27.7 (1.48 , 1.03) Cγ2 17.3 (0.50)
ARG-247	128.5 (9.23)	173.9	53.5 (4.37)	31.9 (1.47)	Cδ 41.8 (3.02) Cγ 27.2 (1.79)
HIS-248	121.1 (8.52)	174.6	55.8 (5.32)	32.9 (2.94)	Ηδ2 7.15 Ηε1 7.70
ILE-249	119.4 (8.72)	176.2	58.5 (4.52)	42.0 (1.39)	Cδ1 13.9 (0.57) Cγ1 25.4 (1.22, 0.73) Cγ2 17.8 (0.54)
GLY-250	113.7 (9.35)	171.0	44.2 (3.71 , 2 12)		
LEU-251	120.8 (7.83)	174.5	52.5 (4.72)	46.8 (0.78 , 1.03)	Cδ1 23.8 (0.59) Cδ2 25.7 (0.38) Cγ 26.3 (0.48)
ALA-252	122.9 (7.91)	173.4	51.5 (4.59)	21.5 (0.92)	
ALA-253	123.0 (9.04)	174.9	51.7 (4.73)	23.0 (0.93)	
LYS-254	115.7 (8.17)	175.1	53.9 (5.73)	36.3 (1.78, 2.06)	Cε 40.4 (2.99) Cγ 22.6 (1.62)
GLN-255	122.7 (8.86)	176.6	57.1 (4.28)	29.5 (1.93, 1.77)	Cγ 33.0 (2.04)
HIS-256	124.2 (8.62)	173.7	54.9 (4.58)		
	.= (1	

Table S3. Statistical analysis of the energy minimized family of conformers of fHbp.

	fHbp ^a (30 Conformers)
Total number of meaningful NOE upper distance	2987
constraints	
Intra-protein NOEs ^b	
Intra-residue	481
Inter-residue	
Sequential $(i-j = 1)$	919
Medium-range ($ i-j < 4$)	399
Long-range ($ i-j > 5$)	1188
Total meaningful dihedral angle restraints ^o	316
Phi	158
Psi	158
RMS violations per meaningful distance constraint (A):	
Intraresidue	0.0205±0.0014
Sequential	0.0077±0.0009
Medium range	0.0101±0.00014
Long range	0.0085±0.0009
RMS violations per meaningful dihedral angle	
constraints (°):	2 2 (4 (+ 1 2 (0 2
	2.3040±1.2093
PSI	2.22/3±1.3964
Average number of violations per conformer:	
Intraresidue	20.069 ± 3.005
Sequential	14.586±2.871
Medium range	11.000 ± 2.613
Long range	23.900±4.294
Phi D-:	2.6000±1.1358
PSI NOE violationa langan than 0.2 Å	<u>3.8500±1.3219</u>
NOE violations larger than 0.5 A	0.000
Average KIVISD to the mean (A) Residue range 14 255 (healthone atoms)	1 25+0 22
Residue range 14-255 (old koone atoms)	1.23 ± 0.23 1.75 ± 0.21
Secondary structure elements (backhone atoms)	1.75±0.21
Secondary structure elements (all heavy atoms)	1 50 ±0.21
residual CVANA Target Function (2)	2 13+0 44
Structural analysis	2.13-0.11
% of residues in most favorable regions	72.5
% of residues in allowed regions	23.1
% of residues in generously allowed regions	3.4
% of residues in disallowed regions	1.0
WHAT IF structure Z-scores ^d	
1st generation packing quality	-2.92
2st generation packing quality	-2.17
Ramachandran plot appearance	-3.62
χ_1/χ_2 rotamer normality	-3.72
Backbone conformation	0.71
WHAT IF RMS Z-scores ^e	

Bond lengths	0.63
Bond angles	1.17
Omega angle restraints	1.4
Side chain planarity	1.82
Improper dihedral distribution	1.01
Inside/Outside distribution	1.03
QUEEN	
$I_{uni}/I_{total}(\%) < 0.001$	2507 (76%)
Average/SD	0.0016 ± 0.0054
Max	0.091

^a Structure calculations were performed with the program CYANA 2.1 [Güntert, P. *et. al* J.Mol.Biol. 273, 1997]. A total of 900 random conformers were subjected to 13000 steps of a simulated annealing process. Each member of the family was submitted to restrained energy minimization (REM in explicit solvent) with the Amber-10 package [Case D.A. *et al* University of California: San Francisco, CA, 2008]. Values of 50 kcal mol-1 \tilde{A}^{-2} and 32 kcal mol⁻¹rad⁻² were used as force constants for the NOE and torsion angle restraints, respectively. The data are calculated over the 30 conformers representing the NMR structure and on the energy minimized mean structure. The mean value and the standard deviation are given

^b Number of meaningful constraints for each class. Backbone dihedral angle constraints were derived from ${}^{15}N, {}^{13}C, {}^{13}C\alpha, {}^{13}C\beta$, and Ha chemical shifts, using TALOS and added as restrains in the structure calculations as well.

^c As it results from the Ramachandran plot analysis performed with PROCHECK.

^d Values calculated on secondary structure elements. A Z-score is defined as the deviation from the average value for this indicator observed in a database of high-resolution crystal structures, expressed in units of the standard deviation of this database-derived average. Typically, Z-scores below a value of -3 are considered poor, those below -4 are considered bad.

^eValues calculated on all residues.

Reference List

1. Cantini, F., Savino, S., Scarselli, M., Masignani, V., Pizza, M. G., Romagnoli, G., Swennen, E., Veggi, D., Banci, L., and Rappuoli, R. (2006) *J.Biol.Chem.* **281**, 7220-7227

2. Cornilescu, G., Delaglio, F., and Bax, A. (1999) J Biomol NMR 13, 289-302

3. Nabuurs, S. B., Spronk, C. A., Krieger, E., Maassen, H., Vriend, G., and Vuister, G. W. (2003) *J.Am.Chem.Soc.* **125**, 12026-12034

4. Vriend, G. (1990) J.Mol.Graphics 8, 52-56

5. Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) *J.Biomol.NMR* 8, 477-486

6. Koradi, R., Billeter, M., and Wüthrich, K. (1996) J.Mol. Graphics 14, 51-55

7. Grzesiek, S. and Bax, A. (1993) J.Am. Chem. Soc. 115, 12593-12594

8. Peng, J. W. and Wagner, G. (1992) J.Magn.Reson. 98, 308-332

9. Gitschier, J., Moffat, B., Reilly, D., Wood, W. I., and Fairbrother, W. J. (1998) *Nature Struct.Biol.* **5**, 47-54

10. Banci, L., Bertini, I., Chasapis, C., Ciofi-Baffoni, S., Hadjiliadis, N., and Rosato, A. (2005) *FEBS J.* **272**, 865-871

11. Hwang, T.-J. and Shaka, A. J. (1995) J Magn Reson A 112, 275-279

12. Sklenar, V., Piotto, M., Leppik, R., and Saudek, V. (1993) *J.Magn.Reson.Ser.A* **102**, 241-245

13. Schleucher, J., Schwendinger, M., Sattler, M., Schmidt, P., Schedletzky, O., Glaser, S. J., Sørensen, O. W., and Griesinger, C. (1994) *J.Biomol.NMR* **4**, 301-306

14. Eletsky, A., Kienhofer, A., and Pervushin, K. (2001) J.Biomol.NMR 20, 177-180

15. Salzmann, M., Pervushin, K., Wider, G., Senn, H., and Wüthrich, K. (1998) *Proc.Natl.Acad.Sci.USA* **95**, 13585-13590

16. Salzmann, M., Wider, G., Pervushin, K., Senn, H., and Wüthrich, K. (1999) *J.Am.Chem.Soc.* **121**, 844-848

17. Yamazaki, T., Arrowsmith, C. H., Muhandiram, D. R., and Kay, L. E. (1994) *J.Am.Chem.Soc.* **116**, 11655-11666

18. Case D.A. et al University of California: San Francisco, CA,. (2008)

19. Kay, L. E., Xu, G. Y., Singer, A. U., Muhandiram, D. R., and Forman-Kay, J. D. (1993) *J.Magn.Reson.Ser.B* **101**, 333-337

20. Zhang, O., Kay, L. E., Olivier, J. P., and Forman-Kay, J. D. (1994) J.Biomol.NMR 4, 845-858

21. Farrow, N. A., Muhandiram, R., Singer, A. U., Pascal, S. M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D., and Kay, L. E. (1994) *Biochemistry* **33**, 5984-6003

22. Keller, R. and Wüthrich, K. A New Software for the Analysis of Protein NMR Spectra.
2002. Personal Communication
23. Keller, R. (2004) *The Computer Aided Resonance Assignment Tutorial*, CANTINA Verlag, Goldau

24. Bartels, C., Xia, T. H., Billeter, M., Güntert, P., and Wüthrich, K. (1995) *J.Biomol.NMR* 5, 1-10

25. A.L. Davis, J. Keeler, E.D. Laue & D. Moskau, J. Magn. Reson. 98, 207-216 (1992)