Metchat et al.

Supporting Information

Methods

Cryosections and Immunofluorescence. Mouse ovaries were fixed for 48 h at 4°C in 4% paraformaldehyde. After fixing, they were placed in 15% sucrose in phosphate-buffered saline (PBS) overnight at 4°C and 30% sucrose in PBS, successively. The ovaries were then frozen in Tissue-Tec O.C.T. Compound at -60°C. Ovary sections (16 μm) were cut using a MICROM 500M, post-fixed with 4% formaldehyde, washed in PBS, permeabilized and blocked in 0.5% Triton-X 100 in 1% BSA- PBS. Primary antibody (HSF1 polyclonal, rabbit, gift from R.I. Morimoto) was used at 1:500 in 0.1% Triton-X 100 in 0.1%BSA-PBS and incubated overnight at 4°C. Secondary antibody directed against rabbit Ig (Goat anti-rabbit Alexa 546 diluted 1:500) was then applied for 1.5 hr at room temperature. TO-PRO-3 (Molecular Probes) was used at 1:200 in 0.1% Triton-X 100 in PBS for DNA staining. Sections were rinsed in PBS, mounted with Moewiol and analyzed with a Leica TCS SP-5 spectral confocal microscope.

Metchat et al.

Figure legends

Fig. S1. HSF1 is expressed during ovarian oogenesis. Immunostaining performed on frozen sections of adult ovary reveals HSF1 expression in oocytes (arrowheads) from primordial (A), primary (B), secondary (C) and antral follicles (D). Panels (E) and (F) represent experiments performed with HSF1-deficient ovary sections or without primary antibody, respectively. Each panel comprises immunodetection on the left and TO-PRO-3 staining on the right side. Bar = $10\mu m$ (A, B, C) and $50 \mu m$ (D, E, F).

Fig. S2. Spindle morphology in GVBD oocytes ($Hsf1^{-/-}$). I-X examples of the various spindle morphologies exhibited in $Hsf1^{-/-}$ oocytes 14 h after IBMX release (green: microtubules; blue: DNA). I –V spindles are not bipolar. VI-X spindles are almost or are completely bipolar.

Table S1 – List of primers used in RT-qPCR and ChIP experiments

Gene symbol	Synonyms	Accession number	Sequences
Hspb1	Hsp25	NM_013560	F5'- CCAGACTGTTCAGACTTCCCAG-3' R5'- ATCCCCTGAGGGCACACTTA-3'
Hspd1	Hsp60, chaperonin	NM_010477	F5'- GCCATGCTTGGAGATTTTGT-3' R5'- CCATTCCAGGGTCCTTCTCT-3'
Hspa1b	Hsp70.1 Hsp70-1 hsp68 Hsp70 HSP70A1	NM_010478	F5'- TGTTCCAGTAGCCTGGGAAG 3' R5'- CCACAAAACCTTAACATGGACA-3'
Hspa1a	Hsp70.3 Hsp70-3	NM_010479	F5'- TTCCAGTAGCCTGGGAAGAC -3' R5'- CCACAAAACCTTAACATGGACA -3'
Hsp90aa1	Hsp90α 86kDa, 89kDa, hsp4, Hsp86-1, Hsp89, Hsp90, Hspca	NM_010480	F5'- AAGGCAGAGGCTGACAAGA-3' R5'- AGGGGAGGCATTTCTTCAGT-3'
Hsp90aa1	Hsp90α (ChIP)	NM_010480	F5'- CTTGCGTTCGTTCTCCGC-3' R5'- CGCACCAGGACACTGAAGC -3'
Hsp90ab1	Hsp90β 90kDa, Hsp84, Hsp84-1, Hsp90, Hspcb	NM_008302	F5'- AAGGCTAGGCAGACAAAA-3' R5'- GGGATCTCATCAGGAACAGC-3'
Hsph1	Hsp105 hsp-E7I, Hsp105, HSP110	NM_013559	F5'-TGAAATCAGAGCGAAGGTCA-3' R5'-TTAGGGTGGCATTCACCATT-3'
Pou5f1	Oct4 Oct-3, Oct-3/4, Otf-3, Otf-4, Otf3-rs7, Otf3g, (ChIP)	NM_013633	F5'- CAG GCC GAG AGG GTG CA-3' R5'- GTG GAA AGA CGG CTC ACC TA-3'
Rps16	S16 ribosomal protein S16	NM_013647	F5'- AGGAGCGATTTGCTGGTGTGG-3' R5'- GCTACCAGGGCCTTTGAGATGGA -3'

Table S2 – Antibodies used in Western blot (WB) and immunostaining (IS) experiments

Protein	Antibody name (species,	Dilution	Source
Symbol	type)		
AKT	Anti-PKB	1:400	KAP-PK004
	(rabbit polyclonal)		Stressgen Bioreagents
CDK1	Cdc2-p34	1:200	Sc-54
	(mouse monoclonal)		Santa Cruz biotechnology
ERK 1/2	p44/42 MAP kinase	1:1000	#9102
	(rabbit polyclonal)		Cell signaling technology
ERK 1/2-P	Phospho-p44/42 MAP kinase	1:1000	#9101
	(Thr202/Tyr204)		Cell signaling technology
	(rabbit polyclonal)		
HSF1	HSF1	1:500	gift from Dr R Morimoto
	(rabbit polyclonal)		
Hsp90α	Heat shock protein 86	1:1000	PA3-013
	(rabbit polyclonal)	1:200 (IS)	Affinity BioReagents (ABR)
Hsp90β	Heat shock protein 84	1:1000	PA3-012
	(rabbit polyclonal)	1:200 (IS)	Affinity BioReagents (ABR)
PLK1	Mouse anti-Plk	Mouse	33-1700
	(mouse monoclonal : PL6-2)	1:500	Zymed Laboratories
			Invitrogen immunodetection
αTUBULIN	Anti-α-Tubulin	1:1000 (WB)	T 9026
	(mouse monoclonal : DM1A)		SIGMA
αTUBULIN	Anti-α-Tubulin	1:100 (IS)	F 2168
FITC conjugate	(mouse monoclonal : DM1A)		SIGMA

Table S3- Timing of meiotic progression in Hsp90-depleted (Hsf1^{-/-}) and Hsp90-inhibited (17AAG) oocytes.

Effect of Hsp90 depletion Effect of Hsp90 inhibition (without preincubation) Hsf1^{+/+} Hsf1^{-/-} Hsf1^{+/+} $Hsf1^{+/-}$ (DMSO) (17AAG) 90 95 Oocytes (n) 24 44 GV – GVBD^a (min) 69.5±8.65 285±26 105±16 92.7±5.04 GV – GVBD^b (min) 58±4.9 ND 156 ± 18.2 ND GVBD – PBE1 (min) 727±20.9 746±36.5 554±41.12 680±18.2

^a Timing calculated from the entire group of experimental oocytes. ^b Timing calculated from the group of experimental oocytes that had completed meiosis I and extruded the 1st polar body (PBE1).

Figure S1

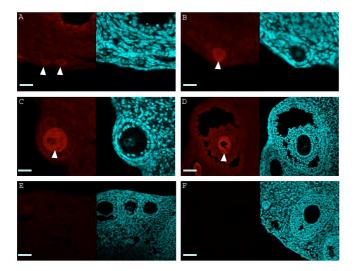
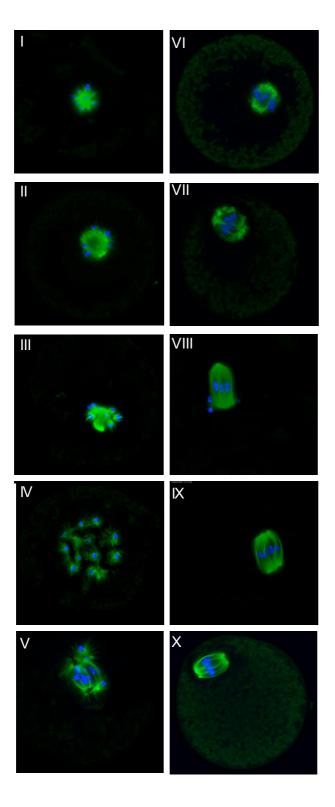



Figure S2

